Wind Tunnel Free Stream Turbulence Measurement Using a
Turbulence Sphere

Parham Khodadi*
A E 303, Section 3, with Dr. Xiaofeng Liu

This experiment investigates the aerodynamic characteristics of a NACA 43012A airfoil
using wind tunnel testing and computational tools. Coefficients of lift, drag, and moment
were obtained across a range of angles of attack and compared with theoretical and numerical
predictions. Experimental results validated key aerodynamic trends while highlighting the
limitations of surface pressure and wake-based measurement techniques. The study emphasizes
the practical challenges of empirical data collection and the value of comparative methods in
aerodynamic analysis.

I. Nomenclature

AoAOR @ = Angle of Attack (degrees or radians)
Cp = Pressure coeflicient (~)
C = Lift Coefficient (~)

Drag Coefficient (~)

= Axial Force Coefficient (~)

= Normal Force Coefficient (~)

Pitching Moment Coeflicient with respect to the Leading Edge (~)

= Pitching Moment Coefficient with respect to the Aerodynamic Center (~)
= Unit Distance Along the Chord Line (~)

= Unit Distance Perpendicular to Chord Line (~)

= Chord Length (in.)

ST
| I

g

RN HONONONONS!
g
)
]

I1. Introduction

Understanding the aerodynamic behavior of airfoils is critical in aerospace design, as they directly influence lift, drag,
and pitching moment characteristics. This experiment investigates the NACA 43012A airfoil using both experimental
and computational methods to analyze its performance at various angles of attack. Surface pressure data collected from
wind tunnel testing is used to compute aerodynamic coefficients and identify flow separation, while wake survey data
provides an independent method of estimating drag. These results are compared with theoretical data from NACA
Report 610 [1], as well as computational predictions generated using XFOIL [?], a panel method solver developed for
low Reynolds number flows. The experiment reinforces core concepts in airfoil aerodynamics and validates theoretical
tools against empirical data [2} 3]].

II1. Theory
In this experiment, two primary methods were used to evaluate the aerodynamic performance of a NACA 43012A
airfoil: surface pressure measurement and wake survey. Each method relies on different physical principles and provides
a complementary way to estimate lift, drag, and pitching moment coefficients.

* Aerospace Engineering student, San Diego State University

A. Surface Pressure Method
The surface pressure method involves measuring the pressure at discrete ports on the upper and lower surfaces of the
airfoil. These pressures are converted into the non-dimensional pressure coefficient:

P~ Pe
Cp=—"2 8))
p Goo

where p is the local pressure, p. is the freestream static pressure, and go, = % PeV?2 is the dynamic pressure [2].

From the distribution of Cp,, the normal (C,,) and axial (C,) force coefficients are computed through numerical
integration. These are then used to compute the lift and drag coefficients via:

Cp = C, cos(a) — C, sin(a) 2)

Cp = Cysin(a@) + C, cos(a) 3)

where « is the angle of attack [3].
The pitching moment about the leading edge is calculated using:

1
Cm,LE = / (Cp,l - Cp,u)x dx (4)
0

and then shifted to the aerodynamic center (typically at x/c = 0.238) using:

Cm,ac =Cm,LE + fCanc cos(a/) —CpYac COS(G) +CrLYac Sin(a) +CpXac Sin(a) (5)
where x,. and y,. are the coordinates of the aerodynamic center [4]].
B. Wake Survey Method

The wake survey provides a more direct estimate of drag by measuring the momentum deficit in the wake downstream
of the airfoil. A multi-port Pitot rake records the local total pressures behind the airfoil, from which the velocity profile

is reconstructed using Bernoulli’s equation:
2p, —
yo [P P) ©)
P

where p; is the total pressure, p is the local static pressure, and p is the air density [3].
The drag per unit span is then estimated from the momentum loss:

D= / pu(Voo —ut) dy @)
which is converted to a drag coefficient via:
D
Cp=— (®)
4

C. Comparison and Flow Behavior

Comparing the drag calculated via both methods helps validate experimental accuracy and understand contributions
from pressure drag and skin friction. The surface pressure method typically underestimates total drag as it ignores skin
friction, while the wake survey captures all profile drag. Additionally, by analyzing the C,, distribution across angles of
attack, flow separation regions can be identified, providing insight into stall behavior and aerodynamic efficiency of the
airfoil [1} 5]

IV. Experimental Setup
The experiment was conducted in the closed-circuit subsonic wind tunnel facility at San Diego State University. The
test article used was a 2-D NACA 43012A airfoil with a 12-inch chord and 24-inch span. The airfoil was instrumented
with 32 pressure ports (Ports 1-32) to measure pressure distributions on both the upper and lower surfaces. These ports
were connected to a ScaniValve pressure transducer to convert pressure data into digital format for analysis.

A. Wake Rake Configuration

A wake rake, consisting of 20 brass pitot tubes (Ports 33-52), was mounted downstream of the airfoil to measure
velocity profiles in the wake region. The wake rake was positioned based on the angle of attack and was rotated 17°
clockwise from the vertical to align with the wake flow at -5° AoA. It rotated and translated horizontally as the AoA
increased to capture wake development accurately.

6.25
9:75
4.75
— = 1.00 = _g-
2
o3
—_— — u
(o]
=
8 =
{-_J.. —
C—)]- —
<
]
= ~o
~ S
=
1.00 0.30

Fig.1 Wake rake configuration with port dimensions (units in inches).

B. Measurement System

The pressure ports were monitored using the ScaniValve system, which records pressures from both the airfoil and
wake rake. Due to hardware limitations, only 47 ports could be connected to the transducer at once, requiring some
measurements to be recorded using a water manometer. The manometer data served as backup validation.

Fig. 3 ScaniValve Pressure Transducer.

Fig. 4 ScaniValve hardware tube connection.

T
——— _POWER
=

S
3
=
N

P ca—

B

Fig. 5 ScaniValve PDM 1500.

C. Test Procedure

The test spanned seven different angle-of-attack configurations: -5°, 0°, 5°, 10°, 15°, 20°, and 20° (with different
wake rake positions). These positions were selected using the Eason 900X control panel, which also adjusted the
airfoil AoA and wake rake orientation automatically. An inclinometer ensured correct wake rake alignment before data
acquisition.

Fig. 6 Airfoil mounted vertically in test section with wake rake behind trailing edge.

D. Data Acquisition

Each test captured 4000 pressure samples per port over a fixed period. Static pressure, total pressure, and internal
temperature were also recorded to compute air density and other relevant flow properties. The ambient pressure was set
to 30.11 inHg and temperature to 79.5°F during the experiment.

The system assumed incompressible, steady flow with no pressure loss between ports and transducers. Port 33, the
lowest wake rake port, was located outside the wake and used as the reference for freestream static pressure.

V. Experimental Procedure
The experiment was performed in the SDSU Subsonic Wind Tunnel as outlined in the lab documentation [4]. A
NACA 43012A airfoil [3] with a 12-inch chord and 32-inch span was mounted horizontally inside the test section.
The angle of attack, @, was varied from —5° to 20° using a calibrated rotary disk. Barometric pressure and ambient
temperature were recorded before each test to determine air density, which was computed using the ideal gas law:

P amb

P=RT ®

where P,ny, is the ambient pressure, R is the specific gas constant for air, and 7 is the absolute temperature.

Surface pressure data was collected using a Scanivalve system connected to 32 ports (16 upper, 16 lower) along the
airfoil’s surface. Each pressure tap’s data was digitized using a LabVIEW-integrated analog-to-digital board at 18 Hz
for 4000 samples per run. The pressure coefficient at each port was calculated using:

Cp= P~ P (10)
4o

where p is the local pressure and ¢, is the freestream dynamic pressure, given by:

1
oo = zpui (11)

To calculate lift and drag via surface pressure measurements, the pressure coefficient distributions were integrated

13 26 27 32

Fig. 7 Typical manometer reading at AoA = 5° with all tubes connected.

along the airfoil chord using numerical methods [6]. The lift and drag coefficients were computed as:

Cp=C,cosa—C,sina (12)
Cp =Cy,sina+C,cosa (13)

where C,, and C,, represent the normal and axial force coefficients, respectively.

Wake surveys were conducted by positioning a Pitot rake downstream of the airfoil. The rake recorded velocity
deficits in the wake by sampling the dynamic pressure at 20 ports, allowing for drag estimation via the momentum
deficit method. The profile drag per unit span was computed from:

D = / puliies — 1) dy (14)

and converted to a non-dimensional drag coefficient using the previously calculated g.
Reference static and total pressure values were collected through dedicated static and Pitot probes located outside
the wake region. These readings ensured accurate baseline conditions for Bernoulli-based velocity estimations:

2(po—p) (15)
P

All data post-processing, including coefficient calculation, curve fitting, and plotting, was performed using MATLAB

[70.

VI. Results and Data Reduction
The aerodynamic coefficients of lift (Cr), drag (Cp), and moment about the aecrodynamic center (Cj,; 4.) Were
computed from pressure measurements taken along the surface of the NACA 43012A airfoil. The processed data from
MATLAB is presented in this section alongside comparison plots using data from XFOIL and NACA Report 610

(1L 5L 18]

A. Lift Coefficient vs. Angle of Attack

The lift coefficient, Cy,, was calculated using the pressure difference between the upper and lower surfaces of the
airfoil at each angle of attack. The variation of C; with angle of attack (@) is shown in Figure[§] As expected, Cr.
increases linearly with « up to 15° before dropping slightly due to the onset of flow separation near stall.

Coefficient of Lift vs. Angle of Attack

—©— Experimental Data
=—8— NACA/XFOIL Data

Lift Coefficient (CL)

-1 I I I I
-5 0 5 10 15 20

Angle of Attack (°)

Fig. 8 Coefficient of Lift vs. Angle of Attack

B. Drag Coefficient vs. Angle of Attack

The drag coefficient, Cp, was determined using surface pressure distributions. As seen in Figure[9] Cp increases
significantly beyond @ = 10°, consistent with growing boundary layer separation. This trend also supports the drop in
lift observed in the previous section.

o Coefficient of Drag vs. Angle of Attack

—©— Experimental Data
0.35 |==B— NACA/XFOIL Data

0.3

0.25

o
o ©
o o

Drag Coefficient (CD)
o

-0.05 : : : :
-5 0 5 10 15 20

Angle of Attack (°)

Fig. 9 Coefficient of Drag vs. Angle of Attack

C. Pitching Moment Coefficient vs. Angle of Attack

Figure T0]illustrates the behavior of the moment coefficient about the aerodynamic center, Cyy, ¢, with increasing
angle of attack. The moment remains relatively constant between @ = 0° and 15° before shifting rapidly at higher
angles, indicating loss of flow attachment and altered pressure distribution around the quarter chord point.

o Pitching Moment Coefficient vs. Angle of Attack

—©— Experimental Data
=—8— NACA/XFOIL Data

-0.05

Moment Coefficient (C_)
m,ac

o
o

-0.15 ' :
-5 0 5 10 15 20

Angle of Attack (°)

Fig. 10 Pitching Moment Coefficient vs. Angle of Attack

D. Comparison with XFOIL and NACA 610

Figures BHIO0] include XFOIL predictions and NACA 610 data for the same airfoil. The experimental lift curve
lies slightly below the theoretical data, likely due to wind tunnel wall effects and experimental uncertainties. Drag
measurements are higher, especially at high angles, reflecting pressure drag induced by flow separation.

E. Surface Pressure Distribution and Flow Separation

To visualize pressure distribution on the upper surface, Figure presents C, vs. x/c for various a. As « increases,
the suction peak near the leading edge becomes stronger and moves upstream. Beyond 15°, the flattened slope and
plateau indicate separation.

10

Cp Distribution on Upper Surface for All AoAs

—6E— AoA =-5°
—E— AcA=0°
AoA =5°
—O— AoA =10°
—O— AoA = 15°

Q AOA = 20°
I —6— AoA = 20°
-]
(%)
P -
(]
o
o
2
o
O

1.5 1 1 1 1 1 1 1 1]
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x/c

Fig. 11 Pressure Coefficient Distribution on Upper Surface

F. Wake Survey vs. Surface Pressure Drag

A momentum balance method was used to calculate drag from wake velocity deficits, as shown in Figure
Wake-based drag results are generally lower than surface-pressure-derived values, especially at mid-range . This
discrepancy is typical and can be attributed to incomplete capture of wake loss or pressure integration assumptions [2].

11

ompa(r)i450n of Drag Coefficients: Surface Pressure vs. Wake Sur

—©— Surface Pressure
0.35 | | =—8— Wake Survey

0.3

0.25

0.2

0.15

0.1

Drag Coefficient (CD)

0.05

_0-05 1 1 1 1
-5 0 5 10 15 20

Angle of Attack (°)

Fig. 12 Comparison of Drag Coefficients: Surface Pressure vs. Wake Survey

G. Wake Velocity Profiles
Finally, wake velocity profiles were computed using Pitot rake data. The velocity deficit behind the airfoil widens
with increasing angle of attack, as seen in Figure[I3] reflecting increased flow separation and drag.

12

Wake Velocity Profiles for All AoAs

0.8r

0.7 - AOA = -5°
AoA =0°
AoA =5°

0.6 AoA = 10°
AOoA = 15°
AoA = 20°

051 AoOA = 20°

o
w
T

Vertical Position y (in)
o
N

o
N
T

©
—_
T

0 20 40 60 80 100 120 140 160 180
Wake Velocity u (ft/s)

Fig. 13 Wake Velocity Profiles for All AoAs

All numerical calculations and data reduction processes were implemented in MATLAB [7]]. Trapezoidal integration
was applied for force and moment estimations [6].

VIL. Discussion

The experimental results for the NACA 43012A airfoil generally follow expected aerodynamic trends, though
several discrepancies with theoretical predictions were observed. The Cr, vs. @ curve demonstrates the expected linear
relationship up to about 15° before decreasing near 20°, consistent with stall behavior [2l]. The slope of the linear region
closely matches that from XFOIL and the NACA 610 report [, 5], suggesting that the pressure measurement system
and calibration were largely accurate in capturing lift behavior.

However, measured drag coefficients were consistently higher than the theoretical values. This is likely due to the
limitations of integrating pressure ports along the surface, which can omit skin friction components and exacerbate form
drag due to three-dimensional flow effects or misalignments in the wind tunnel setup. The discrepancy is especially
evident beyond o = 10°, where flow separation becomes prominent. Furthermore, the drag predicted from the wake
survey method was systematically lower than the pressure-based drag, which is typical due to potential underestimation
of momentum loss across the wake or imperfect wake rake alignment [2} 4.

The moment coefficient C,, ;- remained relatively stable through moderate angles of attack, as expected for
symmetric or near-symmetric airfoils with minimal camber. Deviations at high o may reflect shifts in the center of
pressure as stall initiates, altering the moment balance about the quarter chord point.

The C,, distributions clearly reveal flow separation. At low angles, a sharp suction peak near the leading edge
followed by a gradual pressure recovery is observed, consistent with attached laminar or mildly turbulent flow. As
increases, the suction peak intensifies and recovery becomes flatter, especially around @ = 15° and beyond. This plateau
behavior is a classic indicator of flow separation on the upper surface [3]]. The wake velocity profiles further corroborate

13

this interpretation—profiles widen and shift with increasing «, indicating momentum deficit due to the separated flow
region downstream.

All data processing was conducted using MATLAB [7]], and numerical integrations for force and moment coefficients
were performed using the trapezoidal rule [6]. While XFOIL [8]] provided a useful comparison for inviscid and mildly
viscous conditions, it does not fully account for complex separation dynamics, especially under stall.

VIII. Conclusion

This experiment successfully characterized the aerodynamic performance of the NACA 43012A airfoil across a
range of angles of attack. Key parameters such as Cr, Cp, and Cy, o Were experimentally determined and compared
against theoretical data from XFOIL and NACA 610. While the lift results closely matched theoretical expectations,
drag and moment coefficients showed increasing deviation near stall due to flow separation. Pressure coefficient
distributions and wake velocity profiles confirmed the presence and extent of separation. Overall, the lab validated
fundamental aerodynamic principles and illustrated practical limitations in experimental measurements under non-ideal
flow conditions.

Acknowledgments
The author would like to thank Dr. Xiaofeng Liu for his guidance and Teacher’s Assistant Andrew Balolong for
assistance during the experiment.

References
[1] Abbott, I. H., Doenhoff, A. E. V., and Stivers Jr, L. S., “Summary of Airfoil Data,” NACA Report 610, 1959.

[2] Anderson, J. D., Fundamentals of Aerodynamics, 3rd ed., McGraw-Hill, New York, 2001.
[3] Anderson, J. D., Introduction to Flight, 6th ed., McGraw-Hill, New York, 2007.
[4] Liu, X., AE 303 Lab 4 Airfoil Instructions, 2025. San Diego State University, Aerospace Engineering Department.

[5] Center, N. G. R., “NACA 43012A Airfoil Data Files,” , 2024. Accessed via https://m-selig.ae.illinois.edu/ads/
coord_database.html.

[6] Kreyszig, E., “Advanced Engineering Mathematics,” John Wiley & Sons, 2011, p. Chapter 20.
[7] The MathWorks, Inc., MATLAB Documentation, The MathWorks, 2024. https://www.mathworks.com/help/matlab/.

[8] Drela, M., “XFOIL 6.99 User Guide,” https://web.mit.edu/drela/Public/web/xfoil/, 2020. Accessed: 2025-03-28.

IX. Appendix

A. Python Code for .cp File Conversion
The following code was used in PyCharm IDE to convert the XFOIL ‘.cp‘ output files into CSV format compatible
with MATLAB:

import os
import pandas as pd

def read_cp_file(filepath):
"""Reads a .cp file from XFOIL and returns a DataFrame with columns x, y, Cp."""
with open(filepath,) as file:
lines = file.readlines()[3:] # Skip first 3 header lines
data = [list(map(float, line.split())) for line in lines if line.strip()]
return pd.DataFrame(data, columns=[s s 1

def convert_cp_files_to_csv(folder_path):

"""Converts all .cp files in the folder to .csv format."""
for filename in os.listdir(folder_path):

14

https://m-selig.ae.illinois.edu/ads/coord_database.html
https://m-selig.ae.illinois.edu/ads/coord_database.html
https://www.mathworks.com/help/matlab/
https://web.mit.edu/drela/Public/web/xfoil/

if filename.endswith():
cp_path = os.path.join(folder_path, filename)
df = read_cp_file(cp_path)

Output filename
csv_name = filename.replace(s)
csv_path = os.path.join(folder_path, csv_name)

df.to_csv(csv_path, index=False)
print (f)

if __name__ == :
Set this to the path where your .cp files are
folder_path = # Current directory; replace with full path if needed
convert_cp_files_to_csv(folder_path)

B. MATLAB
The following MATLAB script [[7] was used for all Data Reduction and Graph Plotting:

Listing1 MATLAB Code for Data Analysis
9% A E 303 — Lab 4

% Author: Parham Khodadi
% Instructor: Xiaofeng Liu
clc;clear;close all;

9% Load Data

% NACA Data

angles = [—5, 0, 5, 10, 15, 20, 20]; % Angles of attack in degrees

naca_data = struct ();

naca_files = {
NACA_Data/01 —NACA43012A_a—05.csv’
"NACA_Data/02—NACA43012A_a+00.csv’
"NACA_Data/03 —NACA43012A_a+05.csv’
>NACA_Data/04 —NACA43012A_a+10.csv”’
>NACA_Data/05—-NACA43012A_a+15.¢csv’
NACA_Data/06 —NACA43012A_a+20.csv’
"NACA_Data/07 —NACA43012A_a+20.csv’

for i = 1:length(angles)
% Use curly braces to extract the file name string
data = readmatrix (naca_files{i});

% Store into struct

naca_data(i).AoA = angles(i);

naca_data(i).x = data(:,1);

naca_data(i).y = data(:,2);

naca_data(i).Cp = data(:,3);
end

% Experimental Data
exp_data = struct ();

15

exp_files = {

for

end

>Experimental_Data/q5AoA—5.csv’
>Experimental_Data/q5A0A0.csv’
"Experimental_Data/q5A0AS5.csv’
"Experimental_Data/q5A0A10.csv’
>Experimental_Data/q5A0Al5.csv’
"Experimental_Data/q5A0A20—1.csv”’
"Experimental _Data/q5A0A20—2.csv’

i = l:length(exp_files)
data = readmatrix (exp_files{i});

% Store into struct
exp_data(i).AoA angles (i);
exp_data(i).Raw data ;

% Optional placeholders for future computed values
exp_data(i).Cp = []; % Will compute later
exp_data(i).x [1; % x/c values from port locations
exp_data(i).y = []; % y/c values from port locations

% Normalize with g=0 AoA=0

exp_data_0 = struct();

exp_data_0.AocA = O0;

exp_data_0.Raw = readmatrix (’Experimental_Data/q0AoA0.csv’
exp_data_0.Cp = []; % Will compute later

exp_data_0.x = []; % x/c values from port locations
exp_data_0.y = []; % y/c values from port locations

9% Port Locations
% From AE_303_Lab_4_Updated_Setup.pdf, page 10

% Lower surface ports 1 16
x_lower = [0.015, 0.029, 0.055, 0.080, 0.105, 0.157, 0.207, 0.257,
0.306, 0.407, 0.507, 0.608, 0.708, 0.812, 0.912, 1.000];
y_lower = [-0.0089, —0.01156, —0.0160, —0.0190, —0.0216, —0.0262, —0.0299,
—0.0330, —0.0353, —-0.0393, —-0.0402, —0.0389, —0.0353, —0.0259,

—0.0132, 0.00];

% Upper surface ports 17 32
x_upper = [0.000, 0.013, 0.025, 0.048, 0.073, 0.097, 0.150, 0.200,
0.250, 0.300, 0.400, 0.500, 0.600, 0.700, 0.800, 0.900];
y_upper = [0.000, 0.0394, 0.0514, 0.0678, 0.0794, 0.0868,

0.0927, 0.0895, 0.0857, 0.0770, 0.0656, 0.0520,
0.0244, 0.01257;

% Full airfoil port arrays (1 32)
x_ports = [x_lower, x_upper];
y_ports = [y_lower, y_upper];

% Save for later Cp calculation

16

);

0.0933,
0.0370,

for i = 1:length(exp_data)
exp_data(i).x = x_ports;
exp_data(i).y = y_ports;
end

% g = 0 & AoA = 0
exp_data_0.x = x_ports;
exp_data_0.y = y_ports;

%% Conversions and Constants
inH20_to_Psi = 0.036126; % inH20 to psi
inHg_to_Psi = 0.491154; % inHg to psi
F_to_R = 459.67;

P_amb = 30.11 % inHg_to_Psi; % psi
T amb = 79.5 + F_to_R; % Rankine
R_air = 1716; %ft Ib/(slug R)

9% Compute Experimental Cp
q_inf = 5 % inH20_to_Psi;
cp_baseline = mean(exp_data_0.Raw(9:60, 2:4001), 2); % From q0AoAO.csv

for i = 1:length(exp_files)
% Read the entire CSV file into a matrix
raw_full = readmatrix(exp_files{i});

% Extract the block of numeric data:
% Rows 9 to 60 (52 ports) and Columns 2 to 4001 (4000 samples)
data = raw_full(9:60, 2:4001);

% Compute the mean pressure for each port (average over samples)
p_avg = mean(data, 2);
p_corrected = p_avg — mean(cp_baseline, 2); % Subtract baseline offset

% Use Port 33 as the freestream (static) pressure reference

p_inf = p_avg(26);

% Compute Cp for ports 1 to 32
cp = (p_corrected(1:32) — p_inf) / q_inf;

% Store the computed Cp as a column vector in exp_data
exp_data(i).Cp = cp(:);
end

9% Compute Normal (Cn) and Axial (Ca) Force Coefficients
for i = 1:length(exp_data)
% Extract Cp for current test (nonuniform: 1 32 ports)
cp = exp_data(i).Cp(:);
% Separate upper and lower surfaces

cp_lower = cp(1l:16); % Ports 1 16
cp_upper = ¢cp(17:32); % Ports 17 32

17

% Define uniform grid along the chord using 161 points

x_uniform = linspace (min(x_lower), max(x_upper), 161)’;
% Interpolate the measured Cp data onto the uniform grid
cp_lower_uniform = interpl (x_lower, cp_lower, x_uniform, ’linear’, ’extrap’);
cp_upper_uniform = interpl (x_upper, cp_upper, x_uniform, ’linear’, ’extrap’);

% Interpolate y—coordinates onto the uniform grid (for slope calculations)

y_lower_uniform = interpl(x_lower, y_lower, X_uniform, ’linear’, ’extrap’);
y_upper_uniform = interpl(x_upper, y_upper, X_uniform, ’linear’, ’extrap’);
% Compute slopes on the uniform grid

dy_dx_lower_uniform = gradient(y_lower_uniform, x_uniform);
dy_dx_upper_uniform = gradient(y_upper_uniform , x_uniform);

% ——— Cn: Normal force coefficient ———

% (Using cp_lower — cp_upper, because the lower surface pressure is higher.)
cn_integrand = cp_lower_uniform — cp_upper_uniform;

cn = simpson_integration (x_uniform, cn_integrand);

9% —— Ca: Axial force coefficient ——

ca_integrand = cp_upper_uniform .x dy_dx_upper_uniform — cp_lower_uniform
ca = simpson_integration (x_uniform, ca_integrand);

% Store results
exp_data(i).Cn = cn;
exp_data(i).Ca ca;

end

9% Compute Lift and Drag Coefficients

for i = 1:length(exp_data)
% Define Angle of Attack Alpha (in degrees)
alpha = exp_data(i).AoA;

% Calculate Lift Coefficient (CL) and Drag Coefficient (CD)

CL
CD

% Store the results in the exp_data structure
exp_data(i).CL = CL;
exp_data(i).CD = CD;

end

% Display the computed Lift and Drag Coefficients

disp(’Lift and Drag, Coefficients for Experimental Data:’);

for i = 1:length(exp_data)
fprintf (’AocA=%g :.CLL=_,%.4f, CD.=,%.4f\n",
end

9% Compute Pitching Moment Coefficient (Cm_LE and

18

exp_data(i).AoA,

Cm_ac)

exp_data(i).Cn % cosd(alpha) — exp_data(i).Ca % sind(alpha);
exp_data(i).Cn % sind(alpha) + exp_data(i).Ca % cosd(alpha);

exp_data(i).CL,

.4 dy_dx_low

exp_dat:

xac = 0.238; % Aerodynamic center location
yac = 0.07; % y/c location of aerodynamic center

for i = 1l:length(exp_data)
% Separate the measured Cp for upper and lower surfaces
cp = exp_data(i).Cp(:);
cp_lower = cp(1:16);
cp_upper = cp(17:32);

% Define uniform grid along the chord using 161 points

x_uniform = linspace (min(x_lower), max(x_upper), 161)’;

% Interpolate Cp and y data onto the uniform grid

cp_lower_uniform = interpl(x_lower, cp_lower, x_uniform, ’linear’, ’extrap’);
cp_upper_uniform = interpl(x_upper, cp_upper, x_uniform, ’linear’, ’extrap’);
y_lower_uniform = interpl(x_lower, y_lower, X_uniform, ’linear’, ’exXtrap’);
y_upper_uniform = interpl(x_upper, y_upper, Xx_uniform, ’linear’, ’extrap’);

% Compute slopes on the uniform grid (of the physical surfaces)
dy_dx_lower_uniform = gradient(y_lower_uniform , x_uniform);
dy_dx_upper_uniform = gradient(y_upper_uniform , Xx_uniform);

% Compute moment integrals using Simpson’s rule:
% First term: (cp_upper — cp_lower) times the moment arm (Xx)
Il = simpson_integration (x_uniform, (cp_upper_uniform — cp_lower_uniform) .% x_uniform

% Second term: Upper surface slope correction
12 = simpson_integration (x_uniform, cp_upper_uniform .x dy_dx_upper_uniform .% y_upper.

% Third term: Lower surface slope correction
I3 = simpson_integration (x_uniform, cp_lower_uniform .x dy_dx_lower_uniform .x y_lower

% Total moment about the leading edge
Cm_LE = I1 + 12 — 1I3;

% Calculate Lift (CL) and Drag (CD) using the previously computed Cn and Ca
alpha = exp_data(i).AoA;

CL = exp_data(i).Cn % cosd(alpha) — exp_data(i).Ca * sind (alpha);

CD = exp_data(i).Cn % sind(alpha) + exp_data(i).Ca * cosd(alpha);

% Shift moment from the leading edge to the aerodynamic center
Cm_ac = Cm_LE + CL % xac * cosd(alpha) — CD % yac * cosd(alpha)
+ CL % yac = sind(alpha) + CD % xac * sind(alpha);

% Store the computed moments

exp_data(i).Cm_LE = Cm_LE;

exp_data(i).Cm_ac = Cm_ac;
end

9% Compute Aerodynamic Coefficients from NACA Data (NACA 610 43012A)

xac 0.238;
yac = 0.07;

19

for

end

i = l:length(naca_files)

% Read CSV data (skip header)
data = readmatrix(naca_files{i})
x = data(:,1); y = data(:,2); cp

>

= data (:,3);

% Interpolate both surfaces onto a common x grid

x_common = linspace(0, 1, 160)’; % Match resolution of input
9% —— Correctly split surfaces from XFOIL output ——
% XFOIL order: LE upper surface TE lower surface LE

n = floor (length(x)/2); % Halfway split

x(l:n); y

_u _u =
1 flipud (x(n+1l:end)); y_1

X
X

y(l:n);

cp_u = cp(l:n);
flipud (y(n+1:end)); cp_l =

% Interpolate Cp and y values to common grid

cp_u_i = interpl(x_u, cp_u, x_common, ’linear’, ’extrap’);
cp_l_i = interpl(x_l, cp_l, x_common, ’linear’, ’extrap’);
y_u_i = interpl(x_u, y_u, X_common, ’linear’, ’extrap’);
y_1_i = interpl(x_l, y_l, x_common, ’linear’, ’extrap’);
% Compute slopes

dy_dx_u = gradient(y_u_i) ./ gradient(x_common);

dy_dx_l = gradient(y_1_i) ./ gradient(x_common);

% Force coefficients

flipud (cp(n+1l:end));

cn = trapz(x_common, cp_l_i — cp_u_i);
ca = trapz(x_common, cp_u_i .% dy_dx_u — cp_l_i .% dy_dx_1);
alpha = angles(i);
CL = cn % cosd(alpha) — ca * sind(alpha);
CD = cn * sind(alpha) + ca * cosd(alpha);
% Moment integrals
I1 = trapz(x_common, (cp_u_i — cp_l_i) .% X_common);
[2 = trapz(x_common, cp_u_i .% dy_dx_u .% y_u_i);
O

I3
Cm_ LE = I1 + I2 — I3;

% Cm at aerodynamic center

trapz (x_common, cp_l_i .% dy_dx_1

C1i);

Cm_ac = Cm_LE + CL % xac * cosd(alpha) — CD % yac * cosd(alpha)
+ CL #* yac #* sind(alpha) + CD % xac * sind(alpha);

% Store to struct if needed (optional)

naca_data(1i).CL = CL;
naca_data(i).CD = CD;
naca_data(i).Cm_ac = Cm_ac;

% Print results

fprintf (’AoA = %g :.CL,=,%.4f, CD_ =_%.4f,_ Cm_ac_=_%.4f\n",

alpha, CL, CD, Cm_ac);

20

9% Plotting Aerodynamic Coefficients vs Angle of Attack

% Experimental Data
AoA_exp = [exp_data.AoA];

CL_exp = [exp_data.CL]J;
CD_exp = [exp_data.CD];
Cm_exp = [exp_data.Cm_ac];

% Theoretical (NACA/XFOIL) Data
AoA_theory = [naca_data.AoA];

CL_theory = [naca_data.CL];
CD_theory = [naca_data.CD];
Cm_theory = [naca_data.Cm_ac];
% —— Plot CL vs AoA ——
figure;

plot (AoA_exp, CL_exp, ’o—r’, ’LineWidth’, 1.8, ’MarkerSize’, 6); hold on;
plot (AoA_theory, CL_theory, ’s—b’, ’LineWidth’, 1.8, ’>MarkerSize’, 6);
grid on;

xlabel (* Angle ,of Attack,()’, ’FontSize’, 12);

ylabel (" Lift_ Coefficient (C_L)’, ’FontSize’, 12);

title (" Coefficient of JLift_ vs._ Angle of_ Attack’, ’FontSize’, 14);

legend (’ Experimental Data’, ’NACA/XFOIL Data’, ’Location’, ’northwest’);
print (’—depsc2’, CL_vs_AoA.eps’);

% —— Plot CD vs AoA ——

figure;

plot (AoA_exp, CD_exp, ’o—r’, ’LineWidth’, 1.8, ’MarkerSize’, 6); hold on;
plot (AoA_theory, CD_theory, ’s—b’, ’LineWidth’, 1.8, ’>MarkerSize’, 6);
grid on;

xlabel (" Angle of Attack,()’, ’FontSize’, 12);

ylabel (*Drag, Coefficient (C_D)’, ’FontSize’, 12);

title (" Coefficient_of_ Drag, vs._ Angle of_ Attack’, ’FontSize’, 14);
legend (’ Experimental Data’, ’NACA/XFOIL Data’, ’Location’, ’northwest’);
print (’—depsc2’, CD_vs_AoA.eps’);

% —— Plot Cm_ac vs AoA ——

figure;

plot (AoA_exp, Cm_exp, ’o—r’, ’LineWidth’, 1.8, ’MarkerSize’, 6); hold on;
plot (AoA_theory, Cm_theory, ’s—b’, ’LineWidth’, 1.8, ’>MarkerSize’, 6);
grid on;

xlabel (* Angle ,of Attack,()’, ’FontSize’, 12);

ylabel (’Moment,Coefficient (C_{m,ac})’, *FontSize’, 12);

title (" Pitching Moment ,Coefficient, vs._ Angle_ of Attack’, *FontSize’, 14);
legend (" Experimental Data’, °'NACA/XFOIL Data’, ’Location’, ’northeast’);

print (’—depsc2’, *Cm_ac_vs_AoA.eps’);

9%k Plot Cp Distribution for All Angles of Attack
% Loop through each AoA case

figure;

hold on;
colors = lines (length(exp_data)); % distinguish curves

21

for i = 1:length(exp_data)
% Extract data
x = exp_data(i).x(:);
cp = exp_data(i).Cp(:);

% Plot upper surface only (ports 17 32)
x_u = x(17:32);
cp_u = cp(17:32);

plot(x_u, cp_u, ’o—’, ’LineWidth’, 1.2, ’Color’, colors(i,:),
"DisplayName’, sprintf(’AoA,=%d ’, exp_data(i).AoA));
end
% Flip y—axis (by convention, lower Cp = more suction)
set(gca, YDir’, reverse’);
grid on;
xlabel (’x/c’, ’FontSize’, 12);
ylabel (°C_p.(upperysurface)’, ’FontSize’, 12);

title ("Cp,Distribution on_ Upper,Surface for All AoAs’, ’FontSize’, 14);
legend (' Location’, ’best’);
print (’—depsc2’, *Cp_Distribution_UpperSurface.eps’);

9% Compare Drag from Wake Survey vs Surface Pressure Measurement
% Constants
wake_angles = [50, 20, 15, 20, 30, 90, 90]; % degrees from AE303 Lab Setup

delta_y_prime = 0.5 % 1/12; % 0.5 in in feet

for i = 1:length(exp_data)
raw = exp_data(i).Raw;

% Wake rake pressures (Ports 41 60)
wake_block = raw(41:60, 2:end); % 20 ports x many samples

p_rake = mean(wake_block, 2); % average pressure per port

% Static & total pressures

p_static = mean(raw (7, 2:end));
p_total = mean(raw (8, 2:end));
% Dynamic pressure ql = freestream

ql = p_total — p_static;

% q2 = p_total_rake — p_static (assuming same static port for all)
q2 = p_rake — p_static;

% Ratio
q2_ql1 = q2 / ql;

% Apply formula:

% Cd = (2 / c) = (sqrt(q2/ql) — q2/ql) dy
integrand = real(sqrt(q2_ql) — q2_ql);

22

% Get vertical spacing for this AoA:
theta_rad = deg2rad(wake_angles(i));
dy = delta_y_prime = sin(theta_rad); % vertical distance between ports

% Original wake grid from 20 ports:
y_wake = (0:19)° % dy; % This gives 20 points (19 segments), which is not allowed by .

% Create a new uniform grid with an odd number of points (e.g., 21 points)
y_wake_new = linspace(y_wake(1l), y_wake(end), 21)°’;

% Interpolate the integrand onto the new grid

integrand_new = interpl(y_wake, integrand, y_wake_new, ’linear’, ’extrap’);

% Chord length in feet (assumed constant)
c=1.0; % ft

% Compute wake drag coefficient using Simpson’s rule on the new grid:
CD_wake = 2 / ¢ % simpson_integration (y_wake_new, integrand_new);

exp_data(i).CD_wake = CD_wake;
end

%
% Plot comparison
%
AoA = [exp_data.AoA];

CD_pressure = [exp_data.CD];
CD_wake = [exp_data.CD_wake];

figure;

plot (AoA, CD_pressure, ’o—r’, ’'LineWidth’, 1.8, ’DisplayName’, ’Surface Pressure’);
hold on;

plot (AoA, CD_wake, ’s—b’, ’LineWidth’, 1.8, ’DisplayName’, ’*Wake Survey’);

grid on;

xlabel (* Angle ,of Attack,()’, ’FontSize’, 12);

ylabel (*Drag, Coefficient (C_D)’, ’FontSize’, 12);

title (" Comparison of Drag Coefficients: Surface Pressure, vs._ Wake Survey’, ’FontSize’, 14)
legend (’Location’, ’northwest’);

print (’—depsc2’, *CD_Comparison_Wake_vs_Surface.eps’);
9% Plot Wake Velocity Profiles for All Angles of Attack

% Wake rake info from AE_303_Lab_4_Updated_Setup. pdf
delta_y_prime = 0.5 % 1/12; % Hypotenuse spacing between wake ports (feet)

% Angles from the table (degrees)
rake_angles = [50, 20, 15, 20, 30, 90, 90]; % One per AoA test

colors = lines (length(exp_data));

figure;
hold on;

23

for i = 1:length(exp_data)
raw = exp_data(i).Raw;

% Wake rake pressures: rows 41 60 (ports 33 52)
p_rake = mean(raw(41:60, 2:4001), 2); % Average over samples

% Total pressure for test (row 8), static pressure (row 7)
p_total = mean(raw (8, 2:4001));
p_static = mean(raw (7, 2:4001));

% Internal temperature (row 5 or 6 depending on your spreadsheet layout)
T_internal = raw(5,5) + F_to_R; % F R

% Density
rho = P_amb / (R_air % T_internal);

% Compute wake velocity (Bernoulli)
u_wake = sqrt(2 * (p_total — p_rake) / rho); % Vector of 20 values

% Each port is offset by delta_y_prime along rake vertical spacing:
y_wake = (0:19)° = delta_y_prime * sind(rake_angles(i)); % 20 x 1 vector

% Plot
plot (u_wake, y_wake, ’LineWidth’, 1.6,
>Color’, colors(i,:), ...
"DisplayName’, sprintf(’AoA ,=%d ’, exp_data(i).AoA));
end
grid on;
xlabel (*Wake_ Velocity u,(ft/s)’, ’FontSize’, 12);
ylabel (* Vertical ,Position_ y,(in)’, ’FontSize’, 12);
title (’Wake,Velocity Profiles for All AoAs’, ’FontSize’, 14);
legend (' Location’, ’best’);

print (’—depsc2’, *Wake_Velocity_Profiles.eps’);

9% Functions
function I = simpson_integration(x, y)
% Simpson’s composite integration assumes an even number of segments.
n = length(x);
if mod(n—1,2) ~= 0
error (’Simpson’ s rule requires an even number of segments (odd number of points).

end
h = (x(end)—x(1))/(n—1);
I = y(1) + y(end) + 4xsum(y(2:2:end—1)) + 2xsum(y(3:2:end —2));

I =12=xh/ 3
end

24

	Nomenclature
	Introduction
	Theory
	Surface Pressure Method
	Wake Survey Method
	Comparison and Flow Behavior

	Experimental Setup
	Wake Rake Configuration
	Measurement System
	Test Procedure
	Data Acquisition

	Experimental Procedure
	Results and Data Reduction
	Lift Coefficient vs. Angle of Attack
	Drag Coefficient vs. Angle of Attack
	Pitching Moment Coefficient vs. Angle of Attack
	Comparison with XFOIL and NACA 610
	Surface Pressure Distribution and Flow Separation
	Wake Survey vs. Surface Pressure Drag
	Wake Velocity Profiles

	Discussion
	Conclusion
	Appendix
	Python Code for .cp File Conversion
	MATLAB

