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This experiment evaluated the aerodynamic performance of a full aircraft model (Douglas
DC-6B) in SDSU’s low-speed wind tunnel. Forces and moments were measured for various
angles of attack and sideslip, with and without the tail installed. A two-level tare correction was
used to isolate aerodynamic loads.

Key results include a lift curve slope of 𝑑𝐶𝐿

𝑑𝛼
= 0.0634, a stall at 𝛼 = 8◦ with 𝐶𝐿,max = 0.6549,

and a maximum lift-to-drag ratio of 16.2. Stability analysis showed tail-on configurations were
stable in pitch and yaw, while tail-off cases exhibited instability. The drag polar fit yielded
𝐶𝐷0 = −0.0100 and 𝑒 = 0.0961, possibly due to measurement noise.

The experiment reinforced aerodynamic theory and highlighted practical challenges such as
alignment sensitivity, RMSD noise, and tare subtraction accuracy.

I. Nomenclature

𝛼 = Angle of Attack (deg)
𝛽 = Sideslip Angle (deg)
𝐶𝐿 = Lift Coefficient (–)
𝐶𝐷 = Drag Coefficient (–)
𝐶𝑀 = Pitching Moment Coefficient (–)
𝐶𝑁 = Yawing Moment Coefficient (–)
𝐹𝑥 = Streamwise Force (lbs)
𝐹𝑦 = Side Force (lbs)
𝐹𝑧 = Vertical Force (lbs)
𝑀𝑥 = Rolling Moment (lb-in)
𝑀𝑦 = Pitching Moment (lb-in)
𝑀𝑧 = Yawing Moment (lb-in)
𝑞 = Dynamic Pressure (psi)
𝑆 = Wing Planform Area (in2)
𝑐 = Mean Aerodynamic Chord (in)
𝑏 = Wing Span (in)
𝐴𝑅 = Aspect Ratio (𝑏2/𝑆) (–)
𝐾 = Induced Drag Factor (–)
𝐶𝐷,0 = Zero-Lift Drag Coefficient (–)
𝑒 = Oswald Efficiency Factor (–)(
𝐶𝐿

𝐶𝐷

)
max

= Maximum Lift-to-Drag Ratio (–)
RMSD = Root Mean Square Deviation (units vary)
𝑇amb = Ambient Temperature (°F)
𝑃amb = Ambient Pressure (psi)

II. Introduction
Understanding the aerodynamic behavior of a full aircraft model is essential for evaluating flight performance,

stability, and control. This experiment aims to measure and analyze the lift, drag, pitching moment, and yawing moment
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of a model aircraft—specifically the Douglas DC-6B—using a subsonic wind tunnel and a six-component strain-gauge
force balance system. The experiment introduces real-world complexities such as tare corrections, support interference,
and ambient condition monitoring, providing hands-on reinforcement of theoretical concepts introduced in AE 301 and
AE 303.

Testing is performed in the San Diego State University Low-Speed Wind Tunnel, where the model is subjected to
various angles of attack (𝛼) and sideslip angles (𝛽) in both tail-on and tail-off configurations. The results allow for
the determination of key aerodynamic parameters such as the lift curve slope, zero-lift angle of attack, maximum lift
coefficient, drag polar fit, Oswald efficiency factor, and longitudinal/directional stability slopes.

The methodology includes rigorous tare subtraction, coefficient derivation, and MATLAB-based data processing.
This lab supports conceptual understanding of stability criteria and efficiency metrics relevant to both academic studies
and applied aerospace design. The experiment follows standard wind tunnel protocols, and the significance of each
variable is further elaborated in the Nomenclature section that follows.

III. Theory
The aerodynamic behavior of an aircraft can be described using nondimensional coefficients derived from measured

forces and moments. These coefficients are defined as:

𝐶𝐿 =
𝐹𝑧

𝑞𝑆
(Lift coefficient) (1)

𝐶𝐷 =
𝐹𝑥

𝑞𝑆
(Drag coefficient) (2)

𝐶𝑀 =
𝑀𝑦

𝑞𝑆𝑐
(Pitching moment coefficient) (3)

𝐶𝑁 =
𝑀𝑧

𝑞𝑆𝑏
(Yawing moment coefficient) (4)

where 𝑞 is the dynamic pressure, 𝑆 is the wing reference area, 𝑐 is the mean aerodynamic chord, and 𝑏 is the span.
The force and moment data are acquired using a 6-component external strain-gauge balance in a subsonic wind tunnel
[1].

To isolate the aerodynamic effects from structural and tare contributions, a two-level correction scheme is used:

Fmodel = [Fmodel on, wind on − Fmodel on, wind off] − [Fmodel off, wind on − Fmodel off, wind off] (5)

This correction removes static loads and aerodynamic interference from the support structure [2].

Longitudinal and Directional Stability
An aircraft exhibits longitudinal static stability when the pitching moment coefficient 𝐶𝑀 decreases with increasing

angle of attack 𝛼, i.e., 𝑑𝐶𝑀

𝑑𝛼
< 0. Similarly, directional static stability is achieved when the yawing moment coefficient

𝐶𝑁 increases with increasing sideslip angle 𝛽, or 𝑑𝐶𝑁

𝑑𝛽
> 0 [3, 4].

Drag Polar and Oswald Efficiency
The drag polar models the total drag as a function of lift:

𝐶𝐷 = 𝐶𝐷,0 + 𝐾𝐶2
𝐿 (6)

where 𝐶𝐷,0 is the zero-lift (parasite) drag coefficient and 𝐾 is the induced drag factor. The factor 𝐾 relates to the
Oswald efficiency factor 𝑒 through:

𝐾 =
1

𝜋𝑒𝐴𝑅
(7)

with 𝐴𝑅 = 𝑏2

𝑆
being the aspect ratio. The parabolic approximation is valid for lift coefficients in the range 𝐶𝐿 ≈ 0.2

to 0.8 [3]. For straight-wing aircraft, an empirical correlation for 𝑒 is given by Raymer as:
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𝑒 = 1.78
(
1 − 0.045𝐴𝑅0.68

)
− 0.64 (8)

which provides an engineering estimate of aerodynamic efficiency based on wing geometry [5].

Sample Calculation
The following sample calculations illustrate how aerodynamic coefficients were computed using data from Run 2 at an
angle of attack 𝛼 = 4◦ and sideslip angle 𝛽 = 0◦.

1. Lift Coefficient 𝐶𝐿

𝐶𝐿 =
𝐹𝑧

𝑞𝑆
=

2.2427
5 × 0.5

=
2.2427

2.5
= 0.8971

2. Drag Coefficient 𝐶𝐷

𝐶𝐷 =
𝐹𝑥

𝑞𝑆
=

0.4647
2.5

= 0.1859

3. Pitching Moment Coefficient 𝐶𝑀

𝐶𝑀 =
𝑀𝑦

𝑞𝑆𝑐
=

0.2036
5 × 0.5 × 0.2

=
0.2036

0.5
= 0.4072

4. Yawing Moment Coefficient 𝐶𝑁

𝐶𝑁 =
𝑀𝑧

𝑞𝑆𝑏
=

0.1556
5 × 0.5 × 2.0

=
0.1556

5
= 0.0311

5. Drag Polar: 𝐶𝐷 = 𝐶𝐷0 + 𝐾𝐶2
𝐿

Using the parabolic drag fit coefficients:

𝐶𝐷0 = −0.0100
𝐾 = 0.4244

𝐶𝐷 = −0.0100 + 0.4244 × (0.8971)2 = −0.0100 + 0.4244 × 0.8048 = 0.3327

6. Oswald Efficiency Factor 𝑒

𝐴𝑅 =
𝑏2

𝑆
=

2.02

0.5
= 8.0

𝑒 =
1

𝜋𝐴𝑅𝐾
=

1
𝜋 × 8.0 × 0.4244

= 0.0937

7. Lift Slope 𝑑𝐶𝐿

𝑑𝛼
From linear fit: 𝑑𝐶𝐿/𝑑𝛼 = 0.0634 per degree.

8. Zero-Lift Angle of Attack 𝛼𝐿=0 From linear fit: 𝛼𝐿=0 = −4.72◦

9. Maximum Lift Coefficient and Stall Angle From data:

𝐶𝐿,max = 0.6549
𝛼stall = 8.00◦
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10. Pitching Moment Slopes

𝑑𝐶𝑀

𝑑𝛼
(Tail-On) = −0.0243

𝑑𝐶𝑀

𝑑𝛼
(Tail-Off) = 0.0135

11. Yawing Moment Slopes

𝑑𝐶𝑁

𝑑𝛽
(Tail-On) = 0.0019

𝑑𝐶𝑁

𝑑𝛽
(Tail-Off) = −0.0009

IV. Experimental Setup
The experiment was conducted in the San Diego State University Low-Speed Wind Tunnel, a closed-return subsonic

tunnel capable of test section speeds up to 180 mph. The tunnel features a 45 in × 32 in × 67 in (W×H×L) test section
and a turbulence factor of 1.27. The wind tunnel is powered by a 150 HP variable pitch 4-blade propeller and is equipped
with advanced instrumentation, including a Particle Image Velocimeter (PIV), Laser Particle Doppler Velocimeter
(PDV), and a 3-degree-of-freedom translation system.

The aerodynamic forces and moments on the full aircraft model (Douglas DC-6B) were measured using a
6-component external strain-gage balance with the following calibrated limits:

• Lift: 150 lb
• Drag: 50 lb
• Side Force: 100 lb
• Pitch, Roll, Yaw Moments: 1000 lb-in each
The model had a reference wing area of 𝑆 = 93.81 in2, mean aerodynamic chord 𝑐 = 3.466 in, and span 𝑏 = 27.066 in.

The dynamic pressure was maintained at 𝑞 = 7 in H2O throughout testing.
Forces and moments were recorded for both tail-on and tail-off configurations. Each run collected data at multiple

angles of attack 𝛼 and sideslip 𝛽 as detailed in Section V. All ambient conditions, including temperature (𝑇amb) and
pressure (𝑃amb), were monitored but not directly used in data reduction due to the constant dynamic pressure setup.
These values are tabulated in the Appendix for completeness.

Root Mean Square Deviations (RMSDs) were computed and are also included in the Appendix as an estimate of
measurement uncertainty. These were not propagated through the final coefficient calculations but provide a qualitative
assessment of repeatability.

V. Experimental Procedure
The procedure followed is outlined below and is consistent with standard wind tunnel aerodynamic force/moment

testing protocols [2]:
1) Barometric reading: Ambient pressure and temperature were recorded before the test runs.
2) System zeroing: The balance system was zeroed with the model mounted in the tunnel at 𝛼 = 0◦, 𝛽 = 0◦, and

wind off.
3) Tare measurement runs:

• Run 4: Model Off, Wind On
• Run 5: Model Off, Wind Off

4) Main test runs:
• Run 1: Model On, Tail On, Wind Off
• Run 2: Model On, Tail On, Wind On
• Run 3: Model On, Tail Off, Wind On

5) Angles tested:
• 𝛼 = −6◦ to 15◦ in 2◦ increments
• 𝛽 = 0◦, 5◦, 10◦ at 𝛼 = 0◦
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6) Data Reduction: The net aerodynamic forces and moments were computed as:

𝐹net = [𝐹model on, wind on − 𝐹model on, wind off] − [𝐹model off, wind on − 𝐹model off, wind off]

This approach, cited in the lab manual and supported by SDSU calibration research [1], removes tare and support
interference effects.

7) Coefficient Calculation: The aerodynamic force and moment coefficients were calculated using:

𝐶𝐿 =
𝐹𝑧

𝑞𝑆
, 𝐶𝐷 =

𝐹𝑥

𝑞𝑆
, 𝐶𝑀 =

𝑀𝑦

𝑞𝑆𝑐
, 𝐶𝑁 =

𝑀𝑧

𝑞𝑆𝑏

8) Automation: Data reduction, coefficient computation, plotting, and numerical curve fitting were performed
using MATLAB R2024a. The code is available in the Appendix.

Figures of the original tabulated data and RMSD values are included in Appendix ??.

VI. Results and Data Reduction
The experimental data from five wind tunnel runs were processed in MATLAB using the script included in

Appendix B. Data were recorded in an Excel spreadsheet and converted to CSV format for analysis. The correction was
based on the following expression:

Fmodel = [Fmodel on, wind on − Fmodel on, wind off] − [Fmodel off, wind on − Fmodel off, wind off]

This two-level tare correction removed structural and aerodynamic support interference effects [2]. Aerodynamic
coefficients were then calculated using:

𝐶𝐿 =
𝐹𝑧

𝑞𝑆
, 𝐶𝐷 =

𝐹𝑥

𝑞𝑆
, 𝐶𝑀 =

𝑀𝑦

𝑞𝑆𝑐
, 𝐶𝑁 =

𝑀𝑧

𝑞𝑆𝑏

Root Mean Square Deviation (RMSD) values for each run were reported in the original dataset and are included in
Appendix B. These represent the sensor uncertainty during the wind tunnel run. While not directly incorporated into the
MATLAB script, they provide insight into force/moment repeatability.

Note: Wind tunnel ambient temperature (𝑇amb) and pressure (𝑃amb) were recorded, but unused in the final calculations,
as dynamic pressure 𝑞 was provided directly.

A. Lift Coefficient vs. Angle of Attack
The variation of lift coefficient 𝐶𝐿 with angle of attack is shown in Figure 1. The lift increased approximately

linearly until stall occurred at approximately 𝛼 = 8◦, with a maximum lift coefficient of 𝐶𝐿,max = 0.6549.
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Fig. 1 𝐶𝐿 vs. angle of attack

B. Maximum Lift and Stall Behavior
As shown in Figure 2, stall occurred at 𝛼 = 8◦, beyond which lift decreased. This defined the stall angle.
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Fig. 2 Maximum lift and stall angle

C. Lift Slope and Zero-Lift Angle
Using a linear fit to the 𝐶𝐿 vs. 𝛼 data in the pre-stall region (Figure 3), the lift slope was determined to be:

𝑑𝐶𝐿

𝑑𝛼
= 0.0634 (per deg), 𝛼𝐿=0 = −4.72◦
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Fig. 3 Linear fit of 𝐶𝐿 vs. 𝛼 for lift slope and zero-lift angle

D. Pitching Moment vs. Angle of Attack
The pitching moment coefficient 𝐶𝑀 decreased linearly with 𝛼 for the tail-on configuration, with a slope of:

𝑑𝐶𝑀

𝑑𝛼
= −0.0243 (tail-on),

𝑑𝐶𝑀

𝑑𝛼
= 0.0135 (tail-off)

The tail-off configuration showed a positive slope, indicating longitudinal instability. The results are shown in
Figure 4.
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Fig. 4 Pitching moment coefficient vs. angle of attack (tail-on and tail-off)
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E. Yawing Moment vs. Sideslip Angle
Directional stability was evaluated by plotting 𝐶𝑁 vs. sideslip angle 𝛽. The tail-on configuration had a positive slope

of 𝑑𝐶𝑁

𝑑𝛽
= 0.0019, confirming directional stability. The tail-off configuration showed a negative slope of 𝑑𝐶𝑁

𝑑𝛽
= −0.0009,

indicating instability. Results are shown in Figure 5.

0 1 2 3 4 5 6 7 8 9 10

 (deg)

-0.01

-0.005

0

0.005

0.01

0.015

0.02

C
N

Yawing Moment vs : Tail-On vs Tail-Off

Tail-On Data

Tail-Off Data

Tail-On Fit

Tail-Off Fit

Fig. 5 Yawing moment coefficient vs. sideslip angle (tail-on and tail-off)

F. Lift-to-Drag Ratio and Efficiency
The lift-to-drag ratio 𝐶𝐿/𝐶𝐷 was computed for each data point. The maximum value was:(

𝐶𝐿

𝐶𝐷

)
max

= 16.214 at 𝛼 = 4◦
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Fig. 6 Lift-to-drag ratio vs. angle of attack

G. Drag Polar and Oswald Efficiency Factor
The drag polar was fitted with the standard parabolic model:

𝐶𝐷 = 𝐶𝐷,0 + 𝐾𝐶2
𝐿

with fit results:
𝐶𝐷,0 = −0.0100, 𝐾 = 0.4244

Using the drag polar coefficient 𝐾 , the Oswald efficiency factor was computed as:

𝑒 =
1

𝜋𝐾𝐴𝑅
= 0.0961

The fit is shown in Figure 7.
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Fig. 7 Parabolic drag polar fit for Oswald efficiency factor

H. Pitching and Yawing Moments (Single Configurations)
Figures 8 and 9 show the isolated tail-on behavior for moment coefficients:
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Fig. 8 Pitching moment coefficient vs. angle of attack (tail-on)
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Fig. 9 Yawing moment coefficient vs. sideslip angle (tail-on)

Each measured data point included a Root Mean Square Deviation (RMSD), which represents the standard deviation
of balance readings over the measurement period. Although not directly propagated through the coefficient calculations,
RMSD values offer insight into the reliability of the balance and highlight potential data anomalies at high angles of
attack.

I. Reynolds Number Estimate
The Reynolds number (𝑅𝑒) for this experiment was calculated based on the mean aerodynamic chord length and

estimated tunnel conditions. Since the dynamic pressure was maintained at a constant value, and no freestream velocity
was explicitly measured, standard atmospheric assumptions were used to estimate flow properties. The Reynolds number
is defined as:

𝑅𝑒 =
𝜌𝑉𝑐

𝜇

Where:
• 𝑐 = 0.456m is the mean aerodynamic chord of the model
• 𝑉 = 30m/s is an estimated tunnel velocity based on subsonic testing standards
• 𝜌 = 1.2041 kg/m3 is the density of air at 20°C and 1 atm
• 𝜇 = 1.825 × 10−5 Pa · s is the dynamic viscosity of air at 20°C
Substituting the values:

𝑅𝑒 =
(1.2041) (30) (0.456)

1.825 × 10−5 = 9.03 × 105

This Reynolds number indicates transitional flow near the upper end of the laminar range, which is typical for
low-speed wind tunnel testing of small-scale aircraft models.

VII. Discussion
To isolate the true aerodynamic forces and moments acting solely on the model, a two-level tare correction was

applied. The first subtraction [𝐹model on, wind on − 𝐹model on, wind off] removed static forces due to the model weight and
mount loading. The second subtraction [𝐹model off, wind on − 𝐹model off, wind off] eliminated wind-induced forces acting on
the support structure. This methodology ensures that the final results represent the net aerodynamic forces and moments
acting on the model alone.

11



The lift coefficient 𝐶𝐿 increased linearly with angle of attack until stall occurred at approximately 𝛼 = 8◦, with
𝐶𝐿,max = 0.6549. This behavior is consistent with expectations from classical airfoil theory and published data on
similar configurations [3]. A linear fit to the pre-stall data gave a lift slope of 𝑑𝐶𝐿

𝑑𝛼
= 0.0634 per degree, and the zero-lift

angle of attack was found to be 𝛼𝐿=0 = −4.72◦. These values are within acceptable bounds for moderate aspect ratio
wings tested in low-speed wind tunnels [2].

The drag polar, fitted with a parabolic model, yielded 𝐶𝐷,0 = −0.0100 and 𝐾 = 0.4244. While a negative zero-lift
drag coefficient is physically unrealistic, it is likely the result of minor inconsistencies in tare subtraction or force
measurement noise. This also contributed to an unusually low Oswald efficiency factor of 𝑒 = 0.0961, significantly
below the typical range of 0.7–0.9 for similar configurations [3]. These anomalies suggest that the RMS deviations in
some force components (particularly 𝐹𝑥) may have impacted the drag curve fit more than the lift-based analyses.

The aircraft’s longitudinal stability was assessed by evaluating the slope 𝑑𝐶𝑀

𝑑𝛼
for both configurations. In the tail-on

case, the slope was negative (−0.0243), indicating longitudinal static stability as expected. Conversely, the tail-off
configuration produced a positive slope (+0.0135), confirming longitudinal instability and demonstrating the crucial
role of the horizontal stabilizer.

Directional stability was analyzed using the slope 𝑑𝐶𝑁

𝑑𝛽
. With the tail on, the slope was positive (+0.0019), confirming

that the vertical tail provided a restoring yawing moment in response to sideslip. Without the tail, the slope reversed
to negative (−0.0009), showing directional instability. These findings directly support classical stability theory and
confirm the effectiveness of the tail surfaces in maintaining directional and longitudinal equilibrium [3].

Ambient conditions such as 𝑇amb and 𝑃amb were recorded and found to be stable across test configurations. However,
they were not used in coefficient calculations due to the use of calibrated tunnel dynamic pressure 𝑞. The RMS deviations
were recorded for all runs and suggest that some components, particularly yawing and pitching moments, showed higher
uncertainty during tail-off measurements, possibly due to reduced aerodynamic damping or slight misalignments.

Some observed variability in the data—especially in force and moment readings at higher angles of attack—may be
attributed to wind tunnel turbulence and model mounting inconsistencies. Although the SDSU low-speed wind tunnel
maintains a relatively low turbulence intensity (turbulence factor of 1.27), fluctuations in freestream conditions can still
affect sensitive measurements such as drag and yawing moments. Additionally, minor misalignments or compliance in
the mounting hardware can introduce asymmetries, particularly when tail-off configurations reduce the restoring effects
of aerodynamic surfaces. These factors could contribute to the slightly noisy behavior seen in the 𝐶𝑁 and 𝐶𝑀 curves
and to the drag polar’s negative 𝐶𝐷,0 offset.

VIII. Conclusion
This experiment successfully demonstrated how aerodynamic forces and moments can be isolated and analyzed for

a full aircraft model in a subsonic wind tunnel. By applying two levels of tare correction, the net aerodynamic loads
were extracted, enabling accurate calculation of lift, drag, and moment coefficients.

The lift curve slope and stall behavior were consistent with theoretical expectations. The pre-stall region exhibited
a linear 𝐶𝐿 vs. 𝛼 relationship with a reasonable slope, and stall occurred near 𝛼 = 8◦, aligning with airfoil theory.
The tail-on configuration produced negative 𝑑𝐶𝑀

𝑑𝛼
and positive 𝑑𝐶𝑁

𝑑𝛽
, confirming longitudinal and directional stability.

Conversely, the tail-off configuration exhibited a reversal in both slopes, confirming the stabilizing roles of the horizontal
and vertical tails. These trends aligned with classical aerodynamic stability theory [3, 4].

One surprising result was the appearance of a slightly negative zero-lift drag coefficient in the fitted drag polar, along
with a notably low Oswald efficiency factor. These anomalies may reflect imprecision in streamwise force measurements,
balance noise, or residual tare asymmetries—particularly in the tail-off configurations.

To refine the experimental process in future implementations, the following improvements are recommended:
• Increase data averaging or sampling frequency to reduce RMSD-induced noise.
• Implement error bars on coefficient plots using the RMSD values as a basis for uncertainty estimation.
• Rigorously verify model alignment and fixture repeatability between runs.
• Incorporate ambient conditions into Reynolds number or density-based pressure calculations.
Overall, the experiment reinforced theoretical aerodynamic principles, illustrated the stabilizing effects of tail

surfaces, and highlighted practical challenges in wind tunnel testing, including tare removal accuracy and sensitivity to
mounting precision.
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IX. Appendix

A. Derivation of Tare Correction Equation
To isolate the true aerodynamic forces and moments acting on a wind tunnel model, we apply a two-level tare

correction based on the principle of superposition. The measured signals from the force balance include contributions
from both aerodynamic loading and structural artifacts such as model weight and support interactions.

Let the measured force vector be denoted as:

Fmeas = Faero + Ftare

where:
• Faero is the true aerodynamic force (the quantity of interest),
• Ftare includes model weight, mount-induced strain, and wind-induced forces on the support structure.
The tare correction is derived by executing four configurations:
1) Model on, Wind on: F1 = Faero + Ftare, model + Ftare, support
2) Model on, Wind off: F2 = Ftare, model
3) Model off, Wind on: F3 = Ftare, support
4) Model off, Wind off: F4 = 0
The tare-corrected aerodynamic force is thus:

Faero = (F1 − F2) − (F3 − F4)

This simplifies to:

Faero = [Fmodel on, wind on − Fmodel on, wind off] − [Fmodel off, wind on − Fmodel off, wind off]

Assumptions:
• The balance responds linearly to force inputs.
• Mounting effects are repeatable and subtractable.
• Environmental conditions (like pressure and temperature) remain constant across tare runs.
Theoretical Basis: This correction aligns with the superposition principles described in classical potential flow

theory. As shown in Chapter 6 of Anderson [3], force and potential contributions from multiple sources (e.g., point
sources, doublets, and freestream) are additive. For instance, the surface velocity on a sphere from a uniform freestream
and a doublet is:

𝑉𝜃 =
3
2
𝑉∞ sin 𝜃
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and the pressure coefficient is:

𝐶𝑝 = 1 − 9
4

sin2 𝜃

Similarly, in wind tunnel testing, we isolate the contribution from the aerodynamic "freestream" effect by subtracting
off the influences from support and mount “sources.”

Conclusion: This tare correction enables precise recovery of aerodynamic coefficients from complex, superimposed
measurements. The corrected forces were subsequently converted into non-dimensional coefficients using:

𝐶𝐿 =
𝐹𝑧

𝑞𝑆
, 𝐶𝐷 =

𝐹𝑥

𝑞𝑆
, 𝐶𝑀 =

𝑀𝑦

𝑞𝑆𝑐
, 𝐶𝑁 =

𝑀𝑧

𝑞𝑆𝑏

as documented in the Results section.

B. Original Experimental Data
The original wind tunnel force and moment measurements, as well as Root Mean Square Deviation (RMSD) values,

are shown in the figures below for each run configuration.
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Fig. 10 Raw data for Run 1–5 (model on/off, wind on/off)

15



Fig. 11 Root Mean Square Deviation (RMSD) data for all runs
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C. MATLAB
The following MATLAB script [6] was used for all Data Reduction and Graph Plotting:

Listing 1 MATLAB Code for Data Analysis
%% AE 303 Lab 5: F u l l Model A i r c r a f t Aerodynamic A n a l y s i s
% Author : Parham Khodadi
% I n s t r u c t o r : X iao f eng Liu

c l e a r ; c l c ; c l o s e a l l ;

%% Load Data
d a t a = r e a d t a b l e ( ’ d a t a . c sv ’ ) ;

%% Cons t an t s and Conve r s i on s
inH2OtoPs i = 27 . 7 076 ; % Conver t p s i t o inH2O
p s i t o P a = 6894 . 7 6 ; % Conver t p s i t o Pa s ca l s
FtoR = 459 . 6 7 ; % Conver t from F a h r e n h e i t t o Rank ine

S = 93 . 8 1 ; % Re f e r e n c e area ( i n ^2 )
c_ba r = 3 . 4 6 6 ; % Chord l e n g t h ( i n )
b = 27 . 0 6 6 ; % Span ( i n )
q = 7 / inH2OtoPs i ; % Dynamic p r e s s u r e i n p s i
R = 1716 ; % f t ∗ l b f / s l u g ∗R

%% Sepa ra t e Runs
run1 = d a t a ( 2 : 1 5 , : ) ; % T a i l o f f ( i f used )
run2 = d a t a ( 1 7 : 3 1 , : ) ; % Main t e s t ( T a i l on )
run3 = d a t a ( 3 3 : 4 7 , : ) ; % G r a v i t y t a r e
run4 = d a t a ( 4 9 : 5 3 , : ) ; % Aero t a r e
run5 = d a t a ( 5 5 : 5 9 , : ) ; % B a s e l i n e

%% De f i n e columns
% Columns i n t h e da ta
c o l _ a l p h a = 5 ; % Alpha
c o l _ b e t a = 6 ; % Beta
col_T = 7 ; % T ( Tempera ture )
co l_Fx = 8 ; % Fx ( Drag Force )
co l_Fy = 9 ; % Fy ( S i d e Force )
co l_Fz = 10 ; % Fz ( L i f t Force )
col_Mx = 11 ; % Mx ( R o l l i n g Moment )
col_My = 12 ; % My ( P i t c h i n g Moment )
col_Mz = 13 ; % Mz ( Yawing Moment )

%% Data C o r r e c t i o n ( Run 2)

r u n 2 _ c o r r e c t e d = run2 ;

% Crea te t h e c o r r e c t i o n da ta f o r when t h e r e i s no Model ( run4 − run3 )
% bu t on l y f o r t h e Fx , Fy , Fz , Mx , My , Mz columns
mod e l o f f _ c o r r e c t i o n = run4 ;
f o r i = 3 : 5

mo d e l o f f _ c o r r e c t i o n ( i , co l_Fx : col_Mz ) = mod e l o f f _ c o r r e c t i o n ( i , co l_Fx : col_Mz ) − run5 ( i , co l_Fx : col_Mz ) ;
end
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% Cor r e c t run2 by r u n 2 _ c o r r e c t e d = run2 − run1 − ( run4 − run3 )
% bu t on l y f o r t h e Fx , Fy , Fz , Mx , My , Mz columns
f o r i = 4 :15

i f run2 { i , c o l _ b e t a } == 0
r u n 2 _ c o r r e c t e d ( i , co l_Fx : col_Mz ) = r u n 2 _ c o r r e c t e d ( i , co l_Fx : col_Mz ) − run1 ( i −1, co l_Fx : col_Mz ) − mod e l o f f _ c o r r e c t i o n ( 3 , co l_Fx : col_Mz ) ;

e l s e i f run2 { i , c o l _ b e t a } == 5
r u n 2 _ c o r r e c t e d ( i , co l_Fx : col_Mz ) = r u n 2 _ c o r r e c t e d ( i , co l_Fx : col_Mz ) − run1 ( i −1, co l_Fx : col_Mz ) − mod e l o f f _ c o r r e c t i o n ( 4 , co l_Fx : col_Mz ) ;

e l s e i f run2 { i , c o l _ b e t a } == 10
r u n 2 _ c o r r e c t e d ( i , co l_Fx : col_Mz ) = r u n 2 _ c o r r e c t e d ( i , co l_Fx : col_Mz ) − run1 ( i −1, co l_Fx : col_Mz ) − mod e l o f f _ c o r r e c t i o n ( 5 , co l_Fx : col_Mz ) ;

end
end

%% Data C o r r e c t i o n ( Run 3)
r u n 3 _ c o r r e c t e d = run3 ;

% Cor r e c t run3 by r u n 3 _ c o r r e c t e d = run3 − ( run4 − run3 )
% bu t on l y f o r t h e Fx , Fy , Fz , Mx , My , Mz columns
% Using t h e same ( run4 − run3 ) da ta from r u n 2 _ c o r r e c t e d
f o r i = 4 :15

i f run3 { i , c o l _ b e t a } == 0
r u n 3 _ c o r r e c t e d ( i , co l_Fx : col_Mz ) = r u n 3 _ c o r r e c t e d ( i , co l_Fx : col_Mz ) − mod e l o f f _ c o r r e c t i o n ( 3 , co l_Fx : col_Mz ) ;

e l s e i f run3 { i , c o l _ b e t a } == 5
r u n 3 _ c o r r e c t e d ( i , co l_Fx : col_Mz ) = r u n 3 _ c o r r e c t e d ( i , co l_Fx : col_Mz ) − mod e l o f f _ c o r r e c t i o n ( 4 , co l_Fx : col_Mz ) ;

e l s e i f run3 { i , c o l _ b e t a } == 10
r u n 3 _ c o r r e c t e d ( i , co l_Fx : col_Mz ) = r u n 3 _ c o r r e c t e d ( i , co l_Fx : col_Mz ) − mod e l o f f _ c o r r e c t i o n ( 5 , co l_Fx : col_Mz ) ;

end
end

%% C a l c u l a t e Aerodynamic Force and Moment C o e f f i c i e n t s

% Ang le s o f A t t a c k
a l ph a_ r un2 = r u n 2 _ c o r r e c t e d {4 : 15 , c o l _ a l p h a } ;

% Be ta s
be t a _ r un2 = r u n 2 _ c o r r e c t e d {4 : 15 , c o l _ b e t a } ;

% L i f t C o e f f i c i e n t = L / ( q∗S ) = Fz / ( q∗S )
C_L = r u n 2 _ c o r r e c t e d {4 : 15 , co l_Fz } / ( q∗S ) ;

% Drag C o e f f i c i e n t = D / ( q∗S ) = Fx / ( q∗S )
C_D = r u n 2 _ c o r r e c t e d {4 : 15 , co l_Fx } / ( q∗S ) ;

% P i t c h i n g Moment C o e f f i c i e n t = M/ ( q∗S∗c_bar ) = My / ( q∗S∗c_bar )
C_M = r u n 2 _ c o r r e c t e d {4 : 15 , col_My } / ( q∗S∗ c_ba r ) ;

% Yaw Moment C o e f f i c i e n t = N / ( q∗S∗b ) = Mz / ( q∗S∗b )
C_N = r u n 2 _ c o r r e c t e d {4 : 15 , col_Mz } / ( q∗S∗b ) ;

%% P l o t Aerodynamic C o e f f i c i e n t s

mask = be t a _ r un2 == 0 ; % f o r symme t r i c a lpha sweep p l o t s

% CL vs a lpha
f i g u r e ;
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p l o t ( a l ph a_ r un2 ( mask ) , C_L ( mask ) , ’o−’ , ’ LineWidth ’ , 1 . 5 ) ;
x l a b e l ( ’ \ a l p h a ␣ ( deg ) ’ ) ;
y l a b e l ( ’C_L ’ ) ;
t i t l e ( ’C_L␣vs ␣ \ a l p h a ␣ ( Ta i l−On) ’ ) ;
gr id on ;
pr in t ( gcf , ’−depsc2 ’ , ’ CL_vs_alpha . eps ’ ) ;

% CM vs a lpha
f i g u r e ;
p l o t ( a l ph a_ r un2 ( mask ) , C_M(mask ) , ’ s−’ , ’ LineWidth ’ , 1 . 5 ) ;
x l a b e l ( ’ \ a l p h a ␣ ( deg ) ’ ) ;
y l a b e l ( ’C_M’ ) ;
t i t l e ( ’C_M␣vs ␣ \ a l p h a ␣ ( Ta i l−On) ’ ) ;
gr id on ;
pr in t ( gcf , ’−depsc2 ’ , ’ CM_vs_alpha . eps ’ ) ;

% CN vs be t a ( on l y use rows w i t h a lpha = 0 t o i s o l a t e b e t a sweep )
mask_beta = r u n 2 _ c o r r e c t e d { : , c o l _ a l p h a } == 0 ;
b e t a _ t a i l o n = r u n 2 _ c o r r e c t e d {mask_beta , c o l _ b e t a } ;
CN_ta i l on = r u n 2 _ c o r r e c t e d {mask_beta , col_Mz} / ( q ∗ S ∗ b ) ;

f i g u r e ;
p l o t ( b e t a _ t a i l o n , CN_ta i lon , ’d−’ , ’ LineWidth ’ , 1 . 5 ) ;
x l a b e l ( ’ \ b e t a ␣ ( deg ) ’ ) ;
y l a b e l ( ’C_N ’ ) ;
t i t l e ( ’C_N␣vs ␣ \ b e t a ␣ ( Ta i l−On) ’ ) ;
gr id on ;
pr in t ( gcf , ’−depsc2 ’ , ’ CN_vs_beta . eps ’ ) ;

% CL vs CD
f i g u r e ;
p l o t (C_D( mask ) , C_L ( mask ) , ’^− ’ , ’ LineWidth ’ , 1 . 5 ) ;
x l a b e l ( ’C_D ’ ) ;
y l a b e l ( ’C_L ’ ) ;
t i t l e ( ’C_L␣vs ␣C_D␣ ( Ta i l−On) ’ ) ;
gr id on ;
pr in t ( gcf , ’−depsc2 ’ , ’CL_vs_CD . eps ’ ) ;

%% C a l c u l a t e Oswald E f f i c i e n c y Fac to r ( e )

% Aspec t Ra t i o ( from lab docs )
AR = (27 . 0 6 6 ) ^ 2 / 9 3 . 8 1 ;

% F i l t e r r e g i o n f o r p a r a b o l i c drag po l a r f i t
CL_f i t = C_L ( mask ) ;
CD_f i t = C_D( mask ) ;

% Only use CL i n range [ 0 . 2 , 0 . 8 ]
f i t _ma s k = ( CL_ f i t >= 0 . 3 ) & ( CL_ f i t <= 0 . 6 ) ;
CL_range = CL_ f i t ( f i t _ma s k ) ;
CD_range = CD_f i t ( f i t _ma s k ) ;

% Prepare d e s i g n m a t r i x : CD = CD0 + K∗CL^2
X = [ ones ( l eng th ( CL_range ) , 1 ) , CL_range . ^ 2 ] ;
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c o e f f s = X \ CD_range ; % Linea r l e a s t s qua r e s

CD0 = c o e f f s ( 1 ) ;
K = c o e f f s ( 2 ) ;

% Oswald e f f i c i e n c y f a c t o r
e = 1 / ( pi ∗ K ∗ AR) ;

% Disp l a y r e s u l t s
f p r i n t f ( ’ P a r a b o l i c ␣Drag␣ Po l a r ␣ F i t ␣ R e s u l t s : \ n ’ ) ;
f p r i n t f ( ’CD0␣=␣%.4 f \ n ’ , CD0 ) ;
f p r i n t f ( ’K␣=␣%.4 f \ n ’ , K ) ;
f p r i n t f ( ’ Oswald␣ E f f i c i e n c y ␣ F a c t o r ␣e␣=␣%.4 f \ n ’ , e ) ;

% P l o t t h e f i t
CL_plot = l i n s p a c e (min ( CL_range ) , max ( CL_range ) , 1 0 0 ) ;
CD_plot = CD0 + K ∗ CL_plot . ^ 2 ;

f i g u r e ;
p l o t ( CL_range , CD_range , ’ bo ’ , ’ DisplayName ’ , ’ Data ’ ) ;
hold on ;
p l o t ( CL_plot , CD_plot , ’ r−’ , ’ LineWidth ’ , 1 . 5 , ’ DisplayName ’ , ’ F i t ’ ) ;
x l a b e l ( ’C_L ’ ) ;
y l a b e l ( ’C_D ’ ) ;
t i t l e ( ’ Drag␣ Po l a r ␣ F i t : ␣C_D␣=␣C_{D, 0} ␣+␣K␣C_L^2 ’ ) ;
l egend ( ’ Loc a t i o n ’ , ’ n o r t hwe s t ’ ) ;
gr id on ;
pr in t ( gcf , ’−depsc2 ’ , ’ DragPolarFi t_CD_vs_CL . eps ’ ) ;

%% Find Maximum L i f t −to−Drag Ra t i o ( C_L /C_D)

% Use on l y da ta where be t a = 0 ( mask a l r e a d y d e f i n e d e a r l i e r )
CL_use = C_L ( mask ) ;
CD_use = C_D( mask ) ;

% Compute L /D f o r a l l p o i n t s
L_over_D = CL_use . / CD_use ;

% Find t h e maximum L /D and i t s i n d e x
[ LoverD_max , idx_max ] = max ( L_over_D ) ;

% E x t r a c t v a l u e s
CL_max_LD = CL_use ( idx_max ) ;
CD_max_LD = CD_use ( idx_max ) ;
alpha_max_LD = a l pha_ r un2 ( mask ) ;
alpha_at_max_LD = alpha_max_LD ( idx_max ) ;

% Disp l a y r e s u l t s
f p r i n t f ( ’ \ nMaximum␣C_L /C_D : \ n ’ ) ;
f p r i n t f ( ’Max␣L /D␣=␣%.3 f ␣ a t ␣ a l ph a ␣=␣%.2 f ␣deg \ n ’ , LoverD_max , alpha_at_max_LD ) ;
f p r i n t f ( ’C_L␣=␣%.4 f , ␣C_D␣=␣%.4 f \ n ’ , CL_max_LD , CD_max_LD ) ;

% P l o t L /D vs a lpha
f i g u r e ;
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p l o t ( alpha_max_LD , L_over_D , ’ ko−’ , ’ LineWidth ’ , 1 . 5 ) ;
x l a b e l ( ’ \ a l p h a ␣ ( deg ) ’ ) ;
y l a b e l ( ’C_L␣ / ␣C_D ’ ) ;
t i t l e ( ’ L i f t −to−Drag␣ Ra t i o ␣ vs ␣ \ a l p h a ␣ ( Ta i l−On) ’ ) ;
gr id on ;
pr in t ( gcf , ’−depsc2 ’ , ’ CL_over_CD_vs_alpha . eps ’ ) ;

%% Find Zero−L i f t Angle o f A t t a c k and L i f t Curve S lope

% F i l t e r t o l i n e a r r e g i o n o f CL vs a lpha
a l p h a _ l i n = a l ph a_ r un2 ( mask ) ;
CL_l in = C_L ( mask ) ;

% Choose l i n e a r range manua l l y ( u s u a l l y −6 t o +6 deg )
l i n e a r _ma sk = ( a l p h a _ l i n >= −6) & ( a l p h a _ l i n <= 6 ) ;
a l p h a _ f i t = a l p h a _ l i n ( l i n e a r _ma sk ) ;
CL_ f i t = CL_l in ( l i n e a r _ma sk ) ;

% Linea r f i t : CL = a ∗ a lpha + b
coef f s_CL = p o l y f i t ( a l p h a _ f i t , CL_f i t , 1 ) ;
dCL_dalpha = coef f s_CL ( 1 ) ; % Slope
a lpha_L0 = −coef f s_CL ( 2 ) / coe f f s_CL ( 1 ) ; % I n t e r c e p t = −b / a

% Di sp l a y r e s u l t s
f p r i n t f ( ’ \ n L i f t ␣Curve␣ F i t ␣ R e s u l t s : \ n ’ ) ;
f p r i n t f ( ’dCL / da l pha ␣=␣%.4 f ␣ pe r ␣deg \ n ’ , dCL_dalpha ) ;
f p r i n t f ( ’ Zero− l i f t ␣ a ng l e ␣ o f ␣ a t t a c k ␣ a lpha_L=0␣=␣%.2 f ␣deg \ n ’ , a lpha_L0 ) ;

% P l o t
a l p h a _ p l o t = l i n s p a c e (−6 , 6 , 1 0 0 ) ; % r e s t r i c t t o l i n e a r r e g i o n on l y
CL_plot = po l yva l ( coeffs_CL , a l p h a _ p l o t ) ;

f i g u r e ;
p l o t ( a l p h a _ l i n , CL_lin , ’ bo ’ , ’ DisplayName ’ , ’ Data ’ ) ;
hold on ;
p l o t ( a l p h a _ p l o t , CL_plot , ’ r−’ , ’ LineWidth ’ , 1 . 5 , ’ DisplayName ’ , ’ L i n e a r ␣ F i t ’ ) ;
x l a b e l ( ’ \ a l p h a ␣ ( deg ) ’ ) ;
y l a b e l ( ’C_L ’ ) ;
t i t l e ( ’ L i f t ␣Curve : ␣ L i n e a r ␣ F i t ␣ t o ␣ Find ␣dC_L / d \ a l p h a ␣ and␣ \ a l pha_ {L=0} ’ ) ;
l egend ( ’ Loc a t i o n ’ , ’ n o r t hwe s t ’ ) ;
gr id on ;
pr in t ( gcf , ’−depsc2 ’ , ’ CL _ v s _ a l p h a _ l i n e a r _ f i t . eps ’ ) ;

%% Find Maximum L i f t C o e f f i c i e n t and S t a l l Angle

% Use c l e an a lpha / C_L sweep from e a r l i e r ( b e t a = 0)
a l p h a _ t r im = a l pha_ r un2 ( mask ) ;
CL_trim = C_L ( mask ) ;

% Find maximum CL
[CL_max , idx_max ] = max ( CL_trim ) ;
a l p h a _ s t a l l = a l p h a _ t r im ( idx_max ) ;
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% Disp l a y r e s u l t s
f p r i n t f ( ’ \ nMaximum␣ L i f t ␣ and␣ S t a l l : \ n ’ ) ;
f p r i n t f ( ’C_L , max␣=␣%.4 f ␣ a t ␣ a l ph a ␣=␣%.2 f ␣deg␣ ( s t a l l ␣ a ng l e ) \ n ’ , CL_max , a l p h a _ s t a l l ) ;

% P l o t
f i g u r e ;
p l o t ( a l p h a_ t r im , CL_trim , ’ bo−’ , ’ LineWidth ’ , 1 . 5 ) ;
hold on ;
p l o t ( a l p h a _ s t a l l , CL_max , ’ r ∗ ’ , ’ Marke rS ize ’ , 10 , ’ DisplayName ’ , ’C_{L , max} ’ ) ;
x l a b e l ( ’ \ a l p h a ␣ ( deg ) ’ ) ;
y l a b e l ( ’C_L ’ ) ;
t i t l e ( ’Maximum␣ L i f t ␣ C o e f f i c i e n t ␣ and␣ S t a l l ␣Angle ’ ) ;
gr id on ;
l egend ( ’ show ’ ) ;
pr in t ( gcf , ’−depsc2 ’ , ’ CLmax_vs_alpha . eps ’ ) ;

%% F i t dCM/ da lpha f o r Ta i l −On and Ta i l −Of f

% −−− Ta i l −On −−−
a l p h a _ t a i l o n = a l ph a_ r un2 ( mask ) ;
CM_tai lon = C_M(mask ) ;

% Use on l y l i n e a r range , e . g . [−6 t o 6 deg ]
f i t _m a s k _ t a i l o n = ( a l p h a _ t a i l o n >= −6) & ( a l p h a _ t a i l o n <= 6 ) ;
a l p h a _ f i t _ t a i l o n = a l p h a _ t a i l o n ( f i t _m a s k _ t a i l o n ) ;
CM_ f i t _ t a i l o n = CM_tai lon ( f i t _m a s k _ t a i l o n ) ;

c o e f f s _CM_ t a i l o n = p o l y f i t ( a l p h a _ f i t _ t a i l o n , CM_f i t _ t a i l o n , 1 ) ;
dCM_da lpha_ ta i l on = coe f f s _CM_ t a i l on ( 1 ) ;

% De f i n e a lpha and C_M f o r t a i l −o f f c o n f i g u r a t i o n
a l ph a_ r un3 = r u n 3 _ c o r r e c t e d {4 : 15 , c o l _ a l p h a } ; % Angle o f a t t a c k ( Run 3)
C_M_t a i l o f f = r u n 3 _ c o r r e c t e d {4 : 15 , col_My} / ( q ∗ S ∗ c_ba r ) ; % P i t c h i n g moment c o e f f i c i e n t ( Run 3)

% −−− Ta i l −Of f −−−
a l p h a _ t a i l o f f = a l pha_ r un3 ( mask ) ; % run3 c o r r e c t e d a lpha
CM_t a i l o f f = C_M_ t a i l o f f ( mask ) ; % run3 c o r r e c t e d moment

f i t _ m a s k _ t a i l o f f = ( a l p h a _ t a i l o f f >= −6) & ( a l p h a _ t a i l o f f <= 6 ) ;
a l p h a _ f i t _ t a i l o f f = a l p h a _ t a i l o f f ( f i t _ m a s k _ t a i l o f f ) ;
CM_ f i t _ t a i l o f f = CM_ t a i l o f f ( f i t _ m a s k _ t a i l o f f ) ;

c o e f f s _CM_ t a i l o f f = p o l y f i t ( a l p h a _ f i t _ t a i l o f f , CM_ f i t _ t a i l o f f , 1 ) ;
dCM_da l ph a_ t a i l o f f = c o e f f s _CM_ t a i l o f f ( 1 ) ;

% Disp l a y r e s u l t s
f p r i n t f ( ’ \ n P i t c h i n g ␣Moment␣ S lope ␣ R e s u l t s : \ n ’ ) ;
f p r i n t f ( ’ Ta i l−On : ␣␣␣␣dCM/ da l pha ␣=␣%.4 f \ n ’ , dCM_da lpha_ ta i l on ) ;
f p r i n t f ( ’ Ta i l−Off : ␣␣␣dCM/ da l pha ␣=␣%.4 f \ n ’ , dCM_da l ph a_ t a i l o f f ) ;

% P l o t f o r Ta i l −On
f i g u r e ;
p l o t ( a l p h a _ t a i l o n , CM_tai lon , ’ bs ’ , ’ DisplayName ’ , ’ Ta i l−On␣Data ’ ) ;
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hold on ;
p l o t ( a l p h a _ f i t _ t a i l o n , po l yva l ( coe f f s_CM_ta i l on , a l p h a _ f i t _ t a i l o n ) , ’b−’ , ’ LineWidth ’ , 1 . 5 ) ;

% P l o t f o r Ta i l −Of f
p l o t ( a l p h a _ t a i l o f f , CM_ta i l o f f , ’ r s ’ , ’ DisplayName ’ , ’ Ta i l−Off ␣Data ’ ) ;
p l o t ( a l p h a _ f i t _ t a i l o f f , po l yva l ( c o e f f s _CM_ t a i l o f f , a l p h a _ f i t _ t a i l o f f ) , ’ r−’ , ’ LineWidth ’ , 1 . 5 ) ;

x l a b e l ( ’ \ a l p h a ␣ ( deg ) ’ ) ;
y l a b e l ( ’C_M’ ) ;
t i t l e ( ’ P i t c h i n g ␣Moment␣ vs ␣ \ a l p h a : ␣ Ta i l−On␣vs ␣ Ta i l−Off ’ ) ;
l egend ( ’ Loc a t i o n ’ , ’ n o r t h e a s t ’ ) ;
gr id on ;
pr in t ( gcf , ’−depsc2 ’ , ’ CM_v s _ a l p h a _ t a i l o n _ t a i l o f f . eps ’ ) ;

%% Find dCN / dBeta f o r Ta i l −On and Ta i l −Of f

% −−− Ta i l −On −−−
mask_b e t a _ t a i l o n = r u n 2 _ c o r r e c t e d { : , c o l _ a l p h a } == 0 ; % c o n s t a n t a lpha = 0
b e t a _ t a i l o n = r u n 2 _ c o r r e c t e d { ma sk_b e t a _ t a i l o n , c o l _ b e t a } ;
CN_ta i l on = r u n 2 _ c o r r e c t e d { ma sk_b e t a _ t a i l o n , col_Mz} / ( q ∗ S ∗ b ) ;

% Linea r f i t
c o e f f s _CN_ t a i l o n = p o l y f i t ( b e t a _ t a i l o n , CN_ta i lon , 1 ) ;
dCN_dbe t a_ t a i l on = c o e f f s _CN_ t a i l o n ( 1 ) ;

% −−− Ta i l −Of f −−−
ma s k _ b e t a _ t a i l o f f = r u n 3 _ c o r r e c t e d { : , c o l _ a l p h a } == 0 ;
b e t a _ t a i l o f f = r u n 3 _ c o r r e c t e d { ma s k _ b e t a _ t a i l o f f , c o l _ b e t a } ;
CN_ t a i l o f f = r u n 3 _ c o r r e c t e d { ma s k _ b e t a _ t a i l o f f , col_Mz} / ( q ∗ S ∗ b ) ;

% Linea r f i t
c o e f f s _CN_ t a i l o f f = p o l y f i t ( b e t a _ t a i l o f f , CN_ t a i l o f f , 1 ) ;
dCN_db e t a _ t a i l o f f = c o e f f s _CN_ t a i l o f f ( 1 ) ;

% Disp l a y r e s u l t s
f p r i n t f ( ’ \ nYawing␣Moment␣ S lope ␣ R e s u l t s : \ n ’ ) ;
f p r i n t f ( ’ Ta i l−On : ␣␣␣␣dCN/ dbe t a ␣=␣%.4 f \ n ’ , dCN_dbe t a_ t a i l on ) ;
f p r i n t f ( ’ Ta i l−Off : ␣␣␣dCN/ dbe t a ␣=␣%.4 f \ n ’ , dCN_db e t a _ t a i l o f f ) ;

% P l o t
f i g u r e ;
p l o t ( b e t a _ t a i l o n , CN_ta i lon , ’ bd ’ , ’ DisplayName ’ , ’ Ta i l−On␣Data ’ ) ;
hold on ;
p l o t ( b e t a _ t a i l o f f , CN_ t a i l o f f , ’ rd ’ , ’ DisplayName ’ , ’ Ta i l−Off ␣Data ’ ) ;

p l o t ( b e t a _ t a i l o n , po l yva l ( c o e f f s _CN_ t a i l o n , b e t a _ t a i l o n ) , ’b−’ , ’ LineWidth ’ , 1 . 5 , ’ DisplayName ’ , ’ Ta i l−On␣ F i t ’ ) ;
p l o t ( b e t a _ t a i l o f f , po l yva l ( c o e f f s _CN_ t a i l o f f , b e t a _ t a i l o f f ) , ’ r−’ , ’ LineWidth ’ , 1 . 5 , ’ DisplayName ’ , ’ Ta i l−Off ␣ F i t ’ ) ;

x l a b e l ( ’ \ b e t a ␣ ( deg ) ’ ) ;
y l a b e l ( ’C_N ’ ) ;
t i t l e ( ’Yawing␣Moment␣ vs ␣ \ b e t a : ␣ Ta i l−On␣vs ␣ Ta i l−Off ’ ) ;
l egend ( ’ Loc a t i o n ’ , ’ n o r t hwe s t ’ ) ;
gr id on ;
pr in t ( gcf , ’−depsc2 ’ , ’ CN _ v s _ b e t a _ t a i l o n _ t a i l o f f . eps ’ ) ;

23


	Nomenclature
	Introduction
	Theory
	Experimental Setup
	Experimental Procedure
	Results and Data Reduction
	Lift Coefficient vs. Angle of Attack
	Maximum Lift and Stall Behavior
	Lift Slope and Zero-Lift Angle
	Pitching Moment vs. Angle of Attack
	Yawing Moment vs. Sideslip Angle
	Lift-to-Drag Ratio and Efficiency
	Drag Polar and Oswald Efficiency Factor
	Pitching and Yawing Moments (Single Configurations)
	Reynolds Number Estimate

	Discussion
	Conclusion
	Appendix
	Derivation of Tare Correction Equation
	Original Experimental Data
	MATLAB

