Lab 6 - Round Jet PIV Measurement

Parham Khodadi*
A E 303, Section 3, with Dr. Xiaofeng Liu

This experiment aimed to investigate the flow characteristics of a turbulent round jet using
Particle Image Velocimetry (PIV). The EduPIV system was used to capture high-resolution
velocity fields by tracking tracer particles in a water tank, illuminated by an LED light
sheet and recorded by a camera connected to DynamicStudio. The collected data were
processed in MATLAB to compute time-averaged velocities, Reynolds stresses, and vorticity.
Results revealed a well-defined shear layer and the onset of turbulence downstream of the
nozzle. Challenges included particle seeding uniformity and lighting consistency. Overall, the
experiment successfully demonstrated key PIV principles and provided insight into turbulent
jet behavior.

I. Nomenclature

i,v = Time-averaged streamwise and cross-stream velocities (m/s)
u', v’ = Velocity fluctuations in x and y directions (m/s)

u'?, v"? = Reynolds normal stresses (m>/s?)

u'v’ = Reynolds shear stress (m?/s?)

Wy = Spanwise vorticity (1/s)

X, Y = Spatial coordinates in the measurement plane (mm)

D = Nozzle diameter (mm)

x/D,y/D = Non-dimensional streamwise and cross-stream coordinates (-)

I1. Introduction
This lab aimed to investigate the turbulent structure of a round jet using Particle Image Velocimetry (PIV). PIV
enables non-intrusive measurement of fluid velocity fields by tracking the motion of seeded particles illuminated
by a light sheet. The experiment focused on visualizing and quantifying jet development, shear layer growth, and
turbulence characteristics. Using the EduPIV system, flow images were captured, analyzed in DynamicStudio, and
further processed in MATLAB to obtain time-averaged velocities, Reynolds stresses, and vorticity.

II1. Theory

The goal of this experiment was to study the near-field behavior of a free, round turbulent jet using Particle Image
Velocimetry (PIV), a modern optical measurement technique that has transformed experimental fluid dynamics [1]].
Compared to older pointwise methods like Pitot tubes or Laser Doppler Velocimetry (LDV), PIV enables non-intrusive,
planar velocity measurements by tracking seeding particles illuminated by a laser sheet across consecutive images [2, 3].
With a sufficiently high acquisition rate and particle density, PIV captures detailed instantaneous velocity fields in space
and time.

In this lab, the EduPIV system was used to investigate the velocity structure and turbulence characteristics of a
round jet in water. Velocity vectors were extracted using Dantec DynamicStudio and exported as a series of 300 CSV
files—each capturing a time step. These files were post-processed in MATLAB to produce time-averaged velocity fields,
Reynolds stresses, and vorticity maps [4].

To analyze turbulence, Reynolds decomposition was applied to the velocity fields. The instantaneous streamwise
and cross-stream velocities u(¢) and v(¢) were decomposed into time-averaged components and fluctuations as follows:
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u(t) =i +u'(r) 1
v(t) = v+ (1) (2)

The fluctuations u#” and v’ represent the unsteady portion of the flow. From these, Reynolds stresses were computed
to quantify the turbulence intensity and shear:

w2 Reynolds normal stress in the x direction 3)
V2 Reynolds normal stress in the y direction @)
u’v’ : Reynolds shear stress (®)]

These stresses represent the turbulent transport of momentum and appear as additional terms in the Reynolds-Averaged
Navier-Stokes (RANS) equations [S].

To characterize rotational structures and vortex formation, 2D spanwise vorticity w, was calculated using the
velocity gradients:

v Ou
Wz = ox 0y ©

This helped identify regions of shear and rotational motion, particularly in the shear layer surrounding the jet core.

According to previous studies [6} [7], round jets exhibit a potential core near the nozzle and develop shear-layer
instabilities that grow into turbulence. These instabilities can be axisymmetric or helical, and their evolution is governed
by the Reynolds number and boundary conditions.

In this lab, MATLAB was used to automate the processing of raw data, including averaging, interpolating onto a
uniform grid, and calculating stresses and vorticity using gradient-based methods. The uniform grid enabled consistent
contour and profile plotting, making it easier to identify jet structure and compare locations nondimensionalized by
nozzle diameter D.

Sample Calculation Reference

A step-by-step calculation for time-averaged velocity is included in Appendix B. This uses one vector point
from a raw CSV file and applies the same logic used in the MATLAB processing script to compute i and v. The
values used are directly from EduPIV_lab.62tbxosb.000000.csv, and the method aligns with the code shown in
ImportData_EduPIV.m [4].

IV. Experimental Setup
The experiment was conducted using the EQuPIV system by Dantec Dynamics to analyze a free turbulent round jet
in a controlled environment. A schematic of the setup is shown in Figure[T] while real images of the physical layout are
provided in Figures [2]and 3]
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Fig.1 Schematic of the EAuPIV round jet experiment setup.

The system consists of a transparent water tank, a 3D printed round nozzle (exit diameter 5 cm), and a controlled
pump for steady flow generation. Seeding particles were added to the water to enable velocity field measurements via
PIV. lllumination was provided by a Dantec LED light source, which projected a 4 mm thick light sheet through fiber
optics and optics modules. This light sheet illuminated the seeding particles within the measurement plane.

A Dantec FlowSense USB camera (2M-165) captured sequential images of the particle movement. The camera
featured a 35 mm low-distortion lens and was positioned perpendicularly to the flow direction. All image acquisition
and PIV analysis were performed using DynamicStudio software.

Fig. 2 Close-up of the nozzle and flow field during operation.
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Fig. 3 Full experimental setup showing the water tank, camera, optics, and pump system.

Materials and Equipment

The components used in the experiment are summarized in Table[I] All parts are manufactured or supplied by

Dantec Dynamics unless otherwise noted.

Table 1 Equipment and Materials Used

Component

Description

DynamicStudio Software
FlowSense USB 2M-165 Camera
35mm Low-Distortion Lens
EduPIV LED Light Source
Optics Module

Seeding Particles

3D Printed Round Nozzle

Flow Loop Tank

EcoDrift 8.1 Pump

Black Backdrop

Used for image acquisition and PIV vector field computation
1920x1200 resolution, 160 fps, USB 3.0

Adjustable aperture, C-mount

150W LED with fiber optic light sheet generation

7.6 cm wide, 35° divergence angle, 4 mm sheet thickness
Polyamide particles, 50 pm diameter, 1.03 g/cm?

5 cm diameter, submerged in tank

80 x 35 x 40 cm, 112 L capacity

1600-8000 L/hr, 8-20 W, speed-controlled

Used to improve contrast and reduce reflection




V. Experimental Procedure
This experiment followed a structured procedure to ensure repeatability and data quality across all phases: preparation,
calibration, and execution. The procedure was carried out using the EduPIV system in conjunction with DynamicStudio
software.

Preparation Phase

1) The tank was filled with tap water and the nozzle was mounted horizontally inside the tank using a magnetic
pump attachment.

2) The fiber optic cable was connected to the LED light source to form a planar light sheet.

3) Seeding particles were suspended in a test tube with water and rubbing alcohol to break the surface tension and
were mixed into the tank.

4) The camera was mounted approximately 19 cm from the tank and connected to the computer via USB.

5) DynamicStudio was launched. The light source was set to full power and room lights were turned off.

6) The optics were adjusted to produce a 4 mm thick light sheet, and a black backdrop was placed at the tank’s rear
wall to minimize reflections.

7) The camera was oriented perpendicular to the flow and aligned parallel to window orientation to minimize glare.

Calibration Phase
1) A calibration target was placed in the plane of the light sheet and viewed through the camera.
2) Camera settings were adjusted (750 ps exposure, reduced frame rate) to clearly capture the target.
3) 20 calibration images were acquired and saved in DynamicStudio.
4) These calibration images were averaged to determine the pixel-to-mm scale factor.

Execution Phase
1) The room lights were turned off again and the pump was set to a low speed for 5-10 minutes to allow flow
stabilization.
2) The camera was reset to a 150 Hz trigger rate and 750 j1s exposure time.
3) At least 300 images were recorded to ensure temporal averaging, leveraging the assumption of ergodicity for
turbulent flow.
4) The captured image pairs were processed using Adaptive PIV analysis in DynamicStudio with:
* Minimum window size: 32x32 pixels
* Maximum window size: 64x64 pixels
* 50% overlap (16-pixel step)
5) The resulting velocity vector fields were exported as .csv files and imported into MATLAB for time-averaging,
Reynolds stress computation, vorticity analysis, and visualization.

VI. Results and Data Reduction
This section presents time-averaged and statistical flow quantities derived from planar PIV measurements of a round
turbulent jet. Results include velocity contours, mean velocity profiles, Reynolds stress distributions, and vorticity
characteristics.
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Fig. 4 Time-averaged streamwise velocity contour map, ii, showing the development of the jet.
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Fig.5 Streamwise velocity profiles (i7) at different x/D locations.
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Fig. 6 Reynolds normal stress profiles in the x direction, ﬁ, at multiple x/D stations.
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Fig. 7 Contour map of u? revealing the extent and peak intensity of streamwise turbulence.



y/D

018
x/D =0.05
0.16 [ l x/D =0.10
x/D =0.15
0.14 r x/D =0.20
' x/D =0.25
012
0.1
0.08
0.06
0.04 |
0.02 -
0 | | | |
-3 -2 -1 0 1 2 3
u'v' (m?/s?) %107
Fig. 8 Reynolds shear stress profiles (/') at selected streamwise locations.

Reynolds Shear Stress Profiles
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Fig. 9 Reynolds shear stress contour map, ’v’, indicating shear layer development.
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Fig. 10 Vorticity profiles (w;) at various x/D locations.
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Fig. 11 Contour plot of vorticity magnitude, |w, |, highlighting regions of rotational flow.
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Reynolds Normal Stress (v'2) Profiles
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Fig. 12 Reynolds normal stress in the y direction, VTZ, across multiple x/D locations.
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Fig. 13 Contour of vT2, showing lateral turbulent intensity in the jet flow.

Each plot above is normalized spatially by nozzle diameter D. Reynolds stresses and vorticity were computed using
time-resolved velocity fields as described in Section [[TI}

VILI. Discussion

The contour plots and velocity profiles clearly illustrate the evolution of the round turbulent jet, including the presence
of a potential core near the nozzle exit and shear layer development downstream. Reynolds normal and shear stress
maps confirm that turbulence intensifies as the jet progresses, with peak values occurring around x/D = 0.15-0.20,
consistent with literature predictions [6) [7].

One notable observation is the asymmetry in some of the Reynolds stress profiles, particularly in «’v" and v'2. This
may be due to slight misalignments in the experimental setup or non-uniform lighting across the field. The vorticity
magnitude plots also suggest the emergence of coherent vortical structures, highlighting the shear layer instabilities
described in theoretical studies [T} 2]].

Design Recommendations
* Camera Mount Stability: To reduce image jitter and improve vector quality, ensure the camera is mounted on a
vibration-isolated platform. Any camera movement directly impacts vector consistency across time steps.
* Seeding Uniformity: While flow structures were visible, enhancing the uniformity of seeding particles—particularly
near the nozzle—could improve correlation accuracy, especially for early jet development.
 Illumination Balance: Ensure the laser sheet maintains consistent intensity across the field. Areas closer to the
fiber-optic source appeared slightly brighter, which could affect image pair matching.
¢ Edge Padding in Data Processing: To avoid artifacts introduced by missing data at the field edges, consider
expanding the field of view or capturing higher-resolution vector grids for better post-processing interpolation.
Overall, the experiment effectively demonstrated key features of turbulent jet flow, and the proposed improvements
would further enhance data quality and repeatability for future implementations.
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VIII. Conclusion
This experiment successfully visualized and quantified the development of a turbulent round jet using Particle
Image Velocimetry (PIV). Time-averaged velocity fields and Reynolds stress maps revealed a well-defined potential
core and the growth of turbulence in the shear layer. Minor asymmetries in stress profiles and vorticity could be
attributed to non-uniform seeding or illumination. These discrepancies highlighted the importance of setup precision
and lighting uniformity in PIV-based measurements. Overall, the results validated key theoretical principles of jet flow
and demonstrated a clear understanding of turbulence characteristics.
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IX. Appendix

A. Data Example
Figure [I4]shows a screenshot of one of the 300 raw data files produced by the PIV system used in this experiment.
Each file contains instantaneous velocity field data for a single image pair, with vector components recorded in both
pixel units and meters per second. These files were processed using EduPIV and MATLAB to compute mean velocities,
vorticity, and Reynolds stress components.
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A B = D E E G H ] K

EduPIViab
b4 v xpixpix ypixpix XMmmm  ymmmm UPixpix VPixpix Ums Vms Status
MNumber  *Number  ~MNumber  ~MNumber  ~Mumber  ~Mumber  ~MNumber  ~MNumber ~Number ~MNumber ~Number ~
1 |»>>*HEADE...
2 |FilelD:DSEx...
3 |Version:2
4 |GridSize:x{W... | Height=74}
5 [>>*DATA*..
6 |x y x (pix)[pix] |y (pix)[pix] |x (mm)[mm]|y (mm)[mm] U pix[pix] V pix[pix] U[m/s] V[m/s] Status
A 0 15.5 15.5 0.10857727... |0.10857727... |0.73635101... |3.01750183... (0.00077373... |0.00317071... (O
a 0 31.5 155 0.22065703... |0.10857727... |0.84226608... |2.88038635... (0.00088503... |0.00302663... (0
9 2 ] 475 155 0.33273681... |0.10857727... |0.99823760... |2.63844299... (0.00104892... |0.00277240... (0
10 B 0 63.5 15.5 0.44481657... |0.10857727... |1.03463363... |2.48044586... (0.00108716... |0.00260638... (0
1 B ] 79.5 155 0.55689632... |0.10857727... [1.02193358... |2.30464553... (0.00107384... |0.00242166... (0
12 |5 0 95.5 155 0.66897610... |0.10857727... |1.03870773... |2.09936904... (0.00109144... |0.00220596... (0
13 |6 0 111.3 155 0.78105588... |0.10857727... |1.23777770... |1.86227798... (0.00130062... |0.00195683... (0
14 0 127.5 15.5 0.89313561... |0.10857727... |1.34754943... | 1.70002746... [0.00141597... |0.00178634... (0
15 |2 0 143.5 15.5 1.00521545... |0.10857727... [1.45120620... |1.56334686... (0.00152488... |0.00164272... (O
16 |2 0 159.5 155 1.11729511... |0.10857727... [1.51973342... | 1.39596557... (0.00159689... |0.00146684... (0
17 |10 0 175.5 15.5 1.22937490... |0.10857727... [1.51733779... |1.26315307... (0.00159437... |0.00132728... |0
18 |11 0 191.5 15.5 1.34145468... |0.10857727... |1.46079635... |1.14150238... (0.00153496... |0.00119946... (0
19 |12 0 207.5 15.5 1.45353446... |0.10857727... [1.33958435... |1.08281326... (0.00140760... |0.00113779... (0
20 )13 ] 223.5 155 1.56561424... |0.10857727... [1.38587570... |0.44168853... (0.00145624... |0.00046411... (0
21 4 0 239.5 155 1.67769403... |0.10857727... [1.31844329... |-0.0089988... (0.00138538... |-9.4557802... |0
22 113 ] 235.5 155 1.78977381... |0.10857727... [1.54999923... |-0.4190444,,, (0.00162869... |-0.0004403... (0
23 16 0 271.5 155 1.90185348... |0.10857727... [1.74619674... |-0.2196731... (0.00183485... |-0.0002308... |0
24 N7 0 287.5 13.5 2.01393337... |0.10857727... |1.67565153... |0.35159301... (0.00176073... |0.00036944... (0
25 18 0 303.5 15.5 2.12601316... |0.10857727... |1.85646820... |0,99917221... (0.00195072... |0.00104990... (0
26 19 0 319.5 155 2.23809294... |0.10857727... |2.29168319... |1.24187850... (0.00240804... |0.00130493... (0
27 |20 0 335.5 155 2.35017249... |0.10857727... |2.63729095... |1.28024291... (0.00277119... |0.00134524... |0
28 |21 0 351.5 135 2.46225227... |0.10857727... |2.70869445... |1.23675918... [0.00284622... |0.00129955... (0
29 |22 0 367.5 15.5 2.57433205... |0.10857727... |2.80633544... |1.22684478... (0.00294882... |0.00128913... (0
30 |23 0 383.5 155 2.68641184... |0.10857727... |2.82142639... |1.16741180... (0.00295468... |0.00122668... (0
31 |24 ] 399.5 155 2.79849162... |0.10857727... |2.49024200... |1.31464385... (0.00261668... |0.00138139... (0
32 125 0 415.5 15.5 2.91057140... |0.10857727... |2.33963394... |1.82066726... (0.00245842... |0.00191310... (0
33 26 0 4315 155 3.02265118... |0.10857727... |2.34585189... |2.98450851... (0.00246496... |0.00313604... (0
34 127 0 447.5 155 3.13473097... |0.10857727... |2.51936340... |3.63147354... (0.00264728... |0.00381585... (0
35 |28 0 463.5 15.5 3.24681073... |0.10857727... |2.76768873... |3.93888473... (0.00290821... |0.00413887... [0
36 |29 0 479.5 15.5 3.35889053... |0.10857727... |2.94546127... |4.35668182... (0.00309501... |0.00457788... (0
37 Bo 0 495.5 15.5 3.47097031... |0.10857727... |2.79278945... |4.20190811... (0.00293459... |0.00441525... (0
38 B1 0 S 155 3.58305010... |0.10857727... |2.60562515... |3.51556396... (0.00273792... |0.00369406... (0

Fig. 14 Sample raw data file from EduPIV output: EQuPIV_lab.62tbxosb.000000.csv

B. Sample Calculation
To demonstrate how time-averaged velocity components are calculated, consider the following single data point
from EduPIV_lab.62tbxosb.000000.csv (Figure[T4):

X [mm] y[mm] U [m/s] V [m/s]

0.1086  0.1086 0.0007737 0.0031071
Table 2 Sample Data Point at Grid Location from CSYV file

Assume the same data point is repeated for all 300 time steps (for illustration). Then, the time-averaged horizontal
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velocity at that location is:

1 N 1 300
A y)) = Z u(iy ) = 305 20.0007737
t=1 t=1

=0.0007737 m/s

In practice, the MATLAB script ImportData_EduPIV.m reads each CSV file and stores the u and v data in a 3D
matrix. The time-averaged fields are computed using:

u_mean = mean(u_raw, 3, ’omitnan’);
v_mean = mean(v_raw, 3, ’omitnan’);

This yields i(x;, y;) and ¥(x;, y;) across the entire field. These fields are then interpolated and plotted to visualize
flow structures.

C. MATLAB: Instructor Provided Code
The following MATLAB script [4] was provided by the instructor to analyze the raw lab data like the ones shown in

Figure [T4}
Listing 1 Instructor provided MATLAB Code

9% Description — Please Read!

%

% This script imports the data from the .csv files for the PIV lab of

% AE303. A status is printed to the command window as each file is imported
% and then once again as each file s data is formatted. Each .csv file

% represents one instant in time for the flow. The data was recorded at 150
% Hz, so 300 files corresponds to 2 seconds of data.

%

% This script checks if the data has been read before so that one does not
% spend extraneous time re—importing data. However, if the import portion
% of the script is terminated early, the parsing portion of the script will
% not function properly and the workspace should be cleared before running
% this script again.

%

% To further avoid repeating portions of the script, divide the script

% into sections with the %% Title’  as is done already and take advantage
% of the ’'Run Section’ option to the right of ’'Run’ in Matlab.

%

% The purpose of this script is to allow the student to work with the data
% presented rather than put unnecessary time into writing their own import
% and formatting script since there is such a large amount of data.

%

9%l Notes on the script output

%

% Upon this script’s completion, there will exist 10 new variables in the
% workspace. Each is important for processing the PIV data. They are as

% follows :

%

% data This is the raw 3D array containing all of the data from
% all 300 of the .csv files; dimensions 8806x11x300

%

% N The number of time steps in the dataset; 300

%
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%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%
%

winsize

u_raw

v_raw

u_pix

V_pix

The velocity

The [1x2 array with the number of rows and columns,
respectively , in the vector grid; should be [119,74]

The 2D matrix of the x—coordinates of the vector grid
The 2D matris of the y—coordinates of the vector grid

The 2D matrix of the u—component of the velocity on the
vector grid with likely erroneous vectors replaced by NaN
with units of m/s

The 2D matrix of the v—component of the velocity on the
vector grid with likely erroneous vectors replaced by NaN
with units of m/s

The 2D matrix of the u—component of the velocity on the
vector grid with no replaced vectors and units of m/s

The 2D matrix of the v—component of the velocity on the
vector grid with no replaced vectors and units of m/s

The 2D matrix of the u—component of the velocity on the
vector grid with likely erroneous vectors replaced by NaN
with units of pixel displacement

The 2D matrix of the v—component of the velocity on the
vector grid with likely erroneous vectors replaced by NaN

with units of pixel displacement

output arrays are all 3D arrays, where the first two

dimensions represent the vector grid and the third dimension is how each

time step is

stored. Moving, for example, from u(:,:,1) to u(:,:,2) is

moving one time step forward in time, while referencing the full vector

grid of u vel

The bottom of
code which wi

ocity components.

the parse portion of the script includes a commented out
Il plot and animation of the flow as the data is parsed.

Running this portion can cause the code to take longer than desired to

run, which is

%% Read Data
winsize = [119
L = winsize (1)*winsize (2); % Get size of vector field

why it is commented out.

741; % Size of vector grid

if ~exist(’data’,’var’) % Check if data read already

N = 300; % Number of files (time steps)

data = zero

for i = 1:N
fprintf
file =

data (:,:

s(L,11,N); % Pre—allocate

(’Now_Retrieving File %d o0f ,300\n’ ,1);
sprintf (’EduPIV_lab.62tbxosb.%06d.csv’,i—1);
,1) = readmatrix (file); % Save each file to data
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end
end

9% Parse Data

s = 1;
t = 1;
u =

=1

_raw =
v_raw =

zeros (119,74,300); v = u;

u; u_pix = u;
v; v_pix = v; % Pre—Allocate

b
X =Uu; y =V,

for i =

1:N

fprintf (’Now,Parsing, Set %d of ,300\n’ ,i); % Status display

for

end
end

X
Y

x(:,

y(:,

q = 1:8806
if data(q,11,i) ~= 0
u(s,t,i) = nan; % Replace flagged vectors with nan
v(s,t,i) = nan;
u_pix(s,t,i) = nan;
v_pix(s,t,i) = nan;
else
u(s,t,i) data(q,9,1); % Parse valid vectors
v(s,t,1) data(q,10,1);
u_pix(s,t,i) = data(q,7,1);
v_pix(s,t,i) data(q,8,1);

end

u_raw(s,t,i) = data(q,9,1);
v_raw(s,t,i) = data(q,10,i);

x(s,t,i) = data(q,5,i); % Record grid
y(s,t,i) data(q,6,1);

S =S + 1; % Move to next row

if mod(q, winsize (1)) == 0 % Detect is done with column
t =t + 1; % Move to next vector column
s = 1; % Reset to first row
end
if q ==
t = 1; % Finished with frame, reset t
% figure(l) % Update only figure 1

Y% contourf(x(:,:,i),y(:,:,1i),sqrt(u(:,:,i)."2 + v(:,:,i)."2),20, LineStyle’

% axis equal % Update cool animation of the flow
% xlabel(’x [cm]’)
% ylabel(’y [cm]’)
% drawnow
end

:,1); % Grid doesn’t change, so we just need a 2D matrix
L)

clear file i q s t x y L
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9% Data Processing

D. MATLAB: My Code
The following MATLAB script [4] was used for all Data Reduction and Graph Plotting:

Listing 2 My MATLAB Code for Data Analysis

9% AE 303 Lab 6
% Author: Parham Khodadi
% Instructor: Xiaofeng Liu

clear; clc; close all;

9% Load Data
% Set working directory to data folder
cd(’EduPIV_Lab_Data’);

% Run the import script
run (’ImportData_EduPIV .m’);

% Return to parent folder for analysis output
cd(’..7);

9% Data Processing: Time—Averaged Fields, Reynolds Stresses, and Vorticity

% Nozzle diameter in mm (given as 5 cm)
D = 50;

% Time—averaged velocities (raw is more complete, avoids NaNs)
u_mean = mean(u_raw, 3, ’omitnan’);
v_mean = mean(v_raw, 3, ‘omitnan’);

% Fluctuations (Reynolds decomposition from filtered velocities)
u_fluct = bsxfun(@minus, u, mean(u, 3, ’omitnan’));
v_fluct = bsxfun(@minus, v, mean(v, 3, ’'omitnan’));

% Reynolds stresses from filtered vectors
uu = mean(u_fluct.”2, 3, ’omitnan’);

vv = mean(v_fluct.”2, 3, ’omitnan’);
uv = mean(u_fluct .% v_fluct, 3, ’omitnan’);
% —— Uniform Grid Generation ——

x_vec = linspace(min(X(:)), max(X(:)), size(X,2));
y_vec = linspace(min(Y(:)), max(Y(:)), size(Y,1));
[ X_uniform, Y_uniform] = meshgrid(x_vec, y_vec);

% Interpolated Reynolds stresses

uu_uniform = griddata(X, Y, uvu, X_uniform, Y_uniform, ’linear’);
vv_uniform = griddata(X, Y, vv, X_uniform, Y_uniform, ’linear’);
uv_uniform = griddata (X, Y, uv, X_uniform, Y_uniform, ’linear’);

% Interpolate u_mean and v_mean onto the uniform grid
u_uniform = griddata (X, Y, u_mean, X_uniform, Y_uniform, ’linear’);
v_uniform = griddata(X, Y, v_mean, X_uniform, Y_uniform, ’linear’);
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% Fill any remaining NaNs at the edges
u_uniform = fillmissing (u_uniform, ’'nearest’);
v_uniform = fillmissing (v_uniform, ’'nearest’);

% Compute gradients and vorticity

dx = mean(diff(x_vec));

dy = mean(diff(y_vec));

[du_dy, ~] = gradient(u_uniform, dy, dx);
[~, dv_dx] = gradient(v_uniform, dy, dx);
vorticity = dv_dx — du_dy;

% Non—dimensional coordinates
X_nd = X_uniform / D;
Y_nd = Y_uniform / D;

%% Objective 2: Time—Averaged u—Velocity Contour Map

figure;

contourf(X_nd, Y_nd, u_uniform, 20, 'LineStyle’, ’none’);

axis equal;

colorbar ;

xlabel (’x/D’);

ylabel(’y/D’);

title (’Time—Averaged, u,Velocity, ,Contour Map,(\itu \rm)’);
saveas (gef, ’figs/u_mean_contour.eps’, ’epsc’); % Save .eps file

%% Objective 3: Reynolds Normal Stress Contour Maps (\itu '*2\rm and \itv '"2\rm)

%% u’2 contour

figure;

contourf(X_nd, Y_nd, uu_uniform, 20, ’LineStyle’, ’none’);

axis equal;

colorbar;

xlabel (’x/D’); ylabel(’y/D’);

title (’Reynolds_ Normal  Stress Contour:  \itu’’*2\rm”’);

saveas (gef, ’figs/uu_reynolds_normal_stress.eps’, “epsc’); % Save .eps file

% v’2 contour

figure;

contourf(X_nd, Y_nd, vv_uniform, 20, ’LineStyle’, ’none’);
axis equal;

colorbar;

xlabel (°x/D’); ylabel(’y/D’);

title (" Reynolds Normal,,Stress Contour: \itv’’"~2\rm’);
saveas (gef, ’figs/vv_reynolds_normal_stress.eps’, ‘epsc’);

9% Objective 4: Reynolds Shear Stress Contour Map (\itu v ’\rm)

figure;

contourf(X_nd, Y_nd, uv_uniform, 20, ’LineStyle’, ’none’);
axis equal;

colorbar;

xlabel (°x/D’); ylabel(’y/D’);
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title (’Reynolds, Shear, Stress Contour: \itu’’v’’\rm’);

% Save .eps file
saveas (gef, ’figs/uv_reynolds_shear_stress.eps’, ’epsc’);

%% Objective 5: Vorticity Magnitude Contour Map

% Compute magnitude of vorticity

vort_mag = abs(vorticity );

figure;

contourf(X_nd, Y_nd, vort_mag, 20, ’LineStyle’, ’none’);
axis equal;

colorbar;

xlabel (’x/D’); ylabel(’y/D’);
title (’ Vorticity Magnitude Contour’);

% Save .eps file
saveas (gef, ’figs/vorticity_magnitude.eps’, ’epsc’);

9% Objective 6: Profiles at Selected Streamwise Locations

% Define five x/D positions to extract vertical profiles
xD_locs = [0.05, 0.10, 0.15, 0.20, 0.25];

% Initialize color options for visual distinction
colors = lines (length (xD_locs));

% Function to find the closest column index for each x/D location

get_x_index = @(x_val) find(abs(X_nd(1,:) — x_val) == min(abs(X_nd(1,:) — x_val)),

% Plot: Mean u—velocity profiles
figure; hold on;
for i = 1:length(xD_locs)
col = get_x_index (xD_locs(i));
plot (u_uniform (:,col), Y_nd(:,col), ’LineWidth’, 1.5, ’Color’, colors(i,:),
"DisplayName’, sprintf(’x/Dy=,%.2f", xD_locs(i)));
end
xlabel ("u,(m/s)’);
ylabel (’y/D’);
title (’Mean_ u,Velocity Profiles at Selected_ x/D,Locations’);
legend ;
grid on;
saveas (gef, °figs/u_profiles_vs_y.eps’, ’epsc’);

% Plot: Reynolds normal stress u’’
figure; hold on;
for i = 1:length(xD_locs)
col = get_x_index (xD_locs(i));
plot (uu_uniform (:,col), Y_nd(:,col), ’LineWidth’, 1.5, *Color’, colors(i,:),
"DisplayName’, sprintf(’x/Du=,%.2f", xD_locs(i)));
end
xlabel (u’’"2,(m"2/s"2)’);
ylabel ("y/D’);

23

1);



title (’Reynolds Normal Stress, (u’’*2),Profiles’);
legend ;

grid on;

saveas (gef, 'figs/uu_profiles_vs_y.eps’, ’epsc’);

% Plot: Reynolds normal stress v’’
figure; hold on;
for i = 1:length(xD_locs)
col = get_x_index (xD_locs(i));
plot (vv_uniform (:,col), Y_nd(:,col), ’LineWidth’, 1.5, *Color’, colors(i,:),
"DisplayName’, sprintf(’x/Du=,%.2f", xD_locs(i)));
end
xlabel ("v’ "2, ,(m"2/s"2)’);
ylabel(’y/D’);
title (’Reynolds Normal  Stress, (v’ "2),Profiles’);
legend ;
grid on;
saveas (gef, ’figs/vv_profiles_vs_y.eps’, ‘epsc’);
% Plot: Reynolds shear stress u’’v’’
figure; hold on;
for i = 1:length(xD_locs)
col = get_x_index (xD_locs(i));
plot (uv_uniform (:,col), Y_nd(:,col), ’LineWidth’, 1.5, ’Color’, colors(i,:),
"DisplayName’, sprintf(’x/Dy=,%.2f", xD_locs(i)));
end
xlabel ("u’’v’’,(m"2/s"2)’);
ylabel ("y/D’);
title ('Reynolds, Shear_ Stress Profiles’);
legend;
grid on;
saveas (gef, ’figs/uv_profiles_vs_y.eps’, ’epsc’);

% Plot: Vorticity profiles
figure; hold on;
for i = 1:length(xD_locs)
col = get_x_index (xD_locs(i));
plot(vorticity (:,col), Y_nd(:,col), ’LineWidth’, 1.5, “Color’, colors(i,:),
"DisplayName’, sprintf (’x/Du=_,%.2f", xD_locs(i)));
end
xlabel (’\omega_z,,(1/s)’);
ylabel ("y/D’);
title (’ Vorticity Profiles at Selected x/D,Locations’);
legend ;
grid on;
saveas (gef, ’figs/vorticity_profiles_vs_y.eps’, ’epsc’);
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